AM-Compactness of some classes of operators

Belmesnaoui Aqzzouz; Jawad H'michane

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 4, page 509-518
  • ISSN: 0010-2628

Abstract

top
We characterize Banach lattices on which each regular order weakly compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-compact.

How to cite

top

Aqzzouz, Belmesnaoui, and H'michane, Jawad. "AM-Compactness of some classes of operators." Commentationes Mathematicae Universitatis Carolinae 53.4 (2012): 509-518. <http://eudml.org/doc/252545>.

@article{Aqzzouz2012,
abstract = {We characterize Banach lattices on which each regular order weakly compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-compact.},
author = {Aqzzouz, Belmesnaoui, H'michane, Jawad},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {AM-compact operator; order weakly compact operator; b-weakly compact operator; almost Dunford-Pettis operator; b-AM-compact operator; order continuous norm; discrete Banach lattice; AM-compact operator; order weakly compact operator; -weakly compact operator; almost Dunford-Pettis operator; Banach lattice},
language = {eng},
number = {4},
pages = {509-518},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {AM-Compactness of some classes of operators},
url = {http://eudml.org/doc/252545},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Aqzzouz, Belmesnaoui
AU - H'michane, Jawad
TI - AM-Compactness of some classes of operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 4
SP - 509
EP - 518
AB - We characterize Banach lattices on which each regular order weakly compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-compact.
LA - eng
KW - AM-compact operator; order weakly compact operator; b-weakly compact operator; almost Dunford-Pettis operator; b-AM-compact operator; order continuous norm; discrete Banach lattice; AM-compact operator; order weakly compact operator; -weakly compact operator; almost Dunford-Pettis operator; Banach lattice
UR - http://eudml.org/doc/252545
ER -

References

top
  1. Aliprantis C.D., Burkinshaw O., Locally Solid Riesz Spaces, Academic Press, New York-London, 1978. Zbl1043.46003MR0493242
  2. Aliprantis C.D., Burkinshaw O., Positive Operators, reprint of the 1985 original, Springer, Dordrecht, 2006. Zbl1098.47001MR2262133
  3. Alpay S., Altin B., Tonyali C., 10.1023/A:1025840528211, Positivity 7 (2003), no. 1–2, 135–139. Zbl1036.46018MR2028377DOI10.1023/A:1025840528211
  4. Alpay S., Altin B., On Riesz spaces with b -property and b -weakly compact operators, Vladikavkaz. Mat. Zh. 11 (2009), no. 2, 19–26. MR2529405
  5. Aqzzouz B., Nouira R., Zraoula L., 10.1090/S0002-9939-06-08585-6, Proc. Amer. Math. Soc. 135 (2007), no. 4, 1151–1157. Zbl1118.47029MR2262919DOI10.1090/S0002-9939-06-08585-6
  6. Aqzzouz B., Zraoula L., 10.1007/BF03032084, Rend. Circ. Mat. Palermo (2) 56 (2007), no. 3, 305–316. Zbl1140.47029MR2376267DOI10.1007/BF03032084
  7. Aqzzouz B., Elbour A., Hmichane J., 10.1007/s11117-008-2288-6, Positivity 13 (2009) no. 4, 683–692. Zbl1191.47024MR2538515DOI10.1007/s11117-008-2288-6
  8. Aqzzouz B., Hmichane J., The class of b-AM-compact operators, Quaestiones Mathematicae(to appear). 
  9. Aqzzouz B., Elbour A., 10.1007/s11117-010-0083-7, Positivity 15 (2011), 369–380. Zbl1244.47034MR2832593DOI10.1007/s11117-010-0083-7
  10. Aqzzouz B., Hmichane J., The b-weak compactness of order weakly compact operators, Complex Anal. Oper. Theory, DOI 10. 1007/s 11785-011-0138-1. 
  11. Chen Z.L., Wickstead A.W., 10.1023/A:1009767118180, Positivity 2 (1998), no. 2, 171–191. Zbl0967.46019MR1656870DOI10.1023/A:1009767118180
  12. Chen Z.L., Wickstead A.W., 10.1016/S0019-3577(98)80017-7, Indag. Math. (N.S.) 9 (1998), no. 2, 187–196. Zbl0922.46017MR1691436DOI10.1016/S0019-3577(98)80017-7
  13. Dodds P.G., 10.2307/1997114, Trans. Amer. Math. Soc. 214 (1975), 389–402. MR0385629DOI10.2307/1997114
  14. Dodds P.G., Fremlin D.H., 10.1007/BF02760610, Israel J. Math. 34 (1979) 287-320. MR0570888DOI10.1007/BF02760610
  15. Grothendieck A., 10.4153/CJM-1953-017-4, Canad. J. Math. 5 (1953), 129–173. Zbl0050.10902MR0058866DOI10.4153/CJM-1953-017-4
  16. Holub J.R., 10.1017/S0017089500006935, Glasgow Math. J. 29 (1987), no. 2, 271–273. Zbl0746.47015MR0901675DOI10.1017/S0017089500006935
  17. Meyer-Nieberg P., Banach lattices, Universitext, Springer, Berlin, 1991. Zbl0743.46015MR1128093
  18. Sanchez J.A., Operators on Banach lattices (Spanish), , Ph.D. Thesis, Complutense University, Madrid, 1985. 
  19. Wickstead A.W., 10.1017/S0305004100074752, Math. Proc. Camb. Philos. Soc. 120 (1996), 175–179. Zbl0872.47018MR1373356DOI10.1017/S0305004100074752
  20. Wnuk W., Banach lattices with the weak Dunford-Pettis property, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 227–236. Zbl0805.46023MR1282338
  21. Zaanen A.C., Riesz Spaces II, North Holland Publishing Co., Amsterdam, 1983. Zbl0519.46001MR0704021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.