AM-Compactness of some classes of operators
Belmesnaoui Aqzzouz; Jawad H'michane
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 4, page 509-518
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAqzzouz, Belmesnaoui, and H'michane, Jawad. "AM-Compactness of some classes of operators." Commentationes Mathematicae Universitatis Carolinae 53.4 (2012): 509-518. <http://eudml.org/doc/252545>.
@article{Aqzzouz2012,
abstract = {We characterize Banach lattices on which each regular order weakly compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-compact.},
author = {Aqzzouz, Belmesnaoui, H'michane, Jawad},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {AM-compact operator; order weakly compact operator; b-weakly compact operator; almost Dunford-Pettis operator; b-AM-compact operator; order continuous norm; discrete Banach lattice; AM-compact operator; order weakly compact operator; -weakly compact operator; almost Dunford-Pettis operator; Banach lattice},
language = {eng},
number = {4},
pages = {509-518},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {AM-Compactness of some classes of operators},
url = {http://eudml.org/doc/252545},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Aqzzouz, Belmesnaoui
AU - H'michane, Jawad
TI - AM-Compactness of some classes of operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 4
SP - 509
EP - 518
AB - We characterize Banach lattices on which each regular order weakly compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-compact.
LA - eng
KW - AM-compact operator; order weakly compact operator; b-weakly compact operator; almost Dunford-Pettis operator; b-AM-compact operator; order continuous norm; discrete Banach lattice; AM-compact operator; order weakly compact operator; -weakly compact operator; almost Dunford-Pettis operator; Banach lattice
UR - http://eudml.org/doc/252545
ER -
References
top- Aliprantis C.D., Burkinshaw O., Locally Solid Riesz Spaces, Academic Press, New York-London, 1978. Zbl1043.46003MR0493242
- Aliprantis C.D., Burkinshaw O., Positive Operators, reprint of the 1985 original, Springer, Dordrecht, 2006. Zbl1098.47001MR2262133
- Alpay S., Altin B., Tonyali C., 10.1023/A:1025840528211, Positivity 7 (2003), no. 1–2, 135–139. Zbl1036.46018MR2028377DOI10.1023/A:1025840528211
- Alpay S., Altin B., On Riesz spaces with -property and -weakly compact operators, Vladikavkaz. Mat. Zh. 11 (2009), no. 2, 19–26. MR2529405
- Aqzzouz B., Nouira R., Zraoula L., 10.1090/S0002-9939-06-08585-6, Proc. Amer. Math. Soc. 135 (2007), no. 4, 1151–1157. Zbl1118.47029MR2262919DOI10.1090/S0002-9939-06-08585-6
- Aqzzouz B., Zraoula L., 10.1007/BF03032084, Rend. Circ. Mat. Palermo (2) 56 (2007), no. 3, 305–316. Zbl1140.47029MR2376267DOI10.1007/BF03032084
- Aqzzouz B., Elbour A., Hmichane J., 10.1007/s11117-008-2288-6, Positivity 13 (2009) no. 4, 683–692. Zbl1191.47024MR2538515DOI10.1007/s11117-008-2288-6
- Aqzzouz B., Hmichane J., The class of b-AM-compact operators, Quaestiones Mathematicae(to appear).
- Aqzzouz B., Elbour A., 10.1007/s11117-010-0083-7, Positivity 15 (2011), 369–380. Zbl1244.47034MR2832593DOI10.1007/s11117-010-0083-7
- Aqzzouz B., Hmichane J., The b-weak compactness of order weakly compact operators, Complex Anal. Oper. Theory, DOI 10. 1007/s 11785-011-0138-1.
- Chen Z.L., Wickstead A.W., 10.1023/A:1009767118180, Positivity 2 (1998), no. 2, 171–191. Zbl0967.46019MR1656870DOI10.1023/A:1009767118180
- Chen Z.L., Wickstead A.W., 10.1016/S0019-3577(98)80017-7, Indag. Math. (N.S.) 9 (1998), no. 2, 187–196. Zbl0922.46017MR1691436DOI10.1016/S0019-3577(98)80017-7
- Dodds P.G., 10.2307/1997114, Trans. Amer. Math. Soc. 214 (1975), 389–402. MR0385629DOI10.2307/1997114
- Dodds P.G., Fremlin D.H., 10.1007/BF02760610, Israel J. Math. 34 (1979) 287-320. MR0570888DOI10.1007/BF02760610
- Grothendieck A., 10.4153/CJM-1953-017-4, Canad. J. Math. 5 (1953), 129–173. Zbl0050.10902MR0058866DOI10.4153/CJM-1953-017-4
- Holub J.R., 10.1017/S0017089500006935, Glasgow Math. J. 29 (1987), no. 2, 271–273. Zbl0746.47015MR0901675DOI10.1017/S0017089500006935
- Meyer-Nieberg P., Banach lattices, Universitext, Springer, Berlin, 1991. Zbl0743.46015MR1128093
- Sanchez J.A., Operators on Banach lattices (Spanish), , Ph.D. Thesis, Complutense University, Madrid, 1985.
- Wickstead A.W., 10.1017/S0305004100074752, Math. Proc. Camb. Philos. Soc. 120 (1996), 175–179. Zbl0872.47018MR1373356DOI10.1017/S0305004100074752
- Wnuk W., Banach lattices with the weak Dunford-Pettis property, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 227–236. Zbl0805.46023MR1282338
- Zaanen A.C., Riesz Spaces II, North Holland Publishing Co., Amsterdam, 1983. Zbl0519.46001MR0704021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.