Synchronization of two coupled Hindmarsh-Rose neurons
Kybernetika (2015)
- Volume: 51, Issue: 5, page 784-799
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDing, Ke, and Han, Qing-Long. "Synchronization of two coupled Hindmarsh-Rose neurons." Kybernetika 51.5 (2015): 784-799. <http://eudml.org/doc/276047>.
@article{Ding2015,
abstract = {This paper is concerned with synchronization of two coupled Hind-marsh-Rose (HR) neurons. Two synchronization criteria are derived by using nonlinear feedback control and linear feedback control, respectively. A synchronization criterion for FitzHugh-Nagumo (FHN) neurons is derived as the application of control method of this paper. Compared with some existing synchronization results for chaotic systems, the contribution of this paper is that feedback gains are only dependent on system parameters, rather than dependent on the norm bounds of state variables of uncontrolled and controlled HR neurons. The effectiveness of our results are demonstrated by two simulation examples.},
author = {Ding, Ke, Han, Qing-Long},
journal = {Kybernetika},
keywords = {coupled neurons; Hindmarsh–Rose neurons; synchronization; feedback control},
language = {eng},
number = {5},
pages = {784-799},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Synchronization of two coupled Hindmarsh-Rose neurons},
url = {http://eudml.org/doc/276047},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Ding, Ke
AU - Han, Qing-Long
TI - Synchronization of two coupled Hindmarsh-Rose neurons
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 5
SP - 784
EP - 799
AB - This paper is concerned with synchronization of two coupled Hind-marsh-Rose (HR) neurons. Two synchronization criteria are derived by using nonlinear feedback control and linear feedback control, respectively. A synchronization criterion for FitzHugh-Nagumo (FHN) neurons is derived as the application of control method of this paper. Compared with some existing synchronization results for chaotic systems, the contribution of this paper is that feedback gains are only dependent on system parameters, rather than dependent on the norm bounds of state variables of uncontrolled and controlled HR neurons. The effectiveness of our results are demonstrated by two simulation examples.
LA - eng
KW - coupled neurons; Hindmarsh–Rose neurons; synchronization; feedback control
UR - http://eudml.org/doc/276047
ER -
References
top- Barrio, R., Martinez, M. A., Serrano, S., Shilnikov, A., 10.1063/1.4882171, Chaos 24 (2014), 023128. MR3403326DOI10.1063/1.4882171
- Chalike, S. K., Lee, K. W., Singh, S. N., 10.1007/s11071-014-1454-6, Nonlinear Dynam. 78 (2014), 467-483. MR3266456DOI10.1007/s11071-014-1454-6
- Checco, P., Righero, M., Biey, M., Kocarev, L., 10.1109/tcsii.2008.2008057, IEEE Trans. Circuits Syst. II: Exp. Briefs 55 (2008), 1274-1278. DOI10.1109/tcsii.2008.2008057
- Ferrari, F. A. S., Viana, R. L., Lopesa, S. R., Stoop, R., 10.1016/j.neunet.2015.03.003, Neural Netw. 66 (2015), 107-118. DOI10.1016/j.neunet.2015.03.003
- Hindmarsh, J. L., Rose, R. M., 10.1038/296162a0, Nature 296 (1982), 162-164. DOI10.1038/296162a0
- Holden, A. V., Fan, Y. S., 10.1016/0960-0779(92)90032-i, Chaos Soliton Fract. 2 (1992), 221-236. Zbl0766.92006DOI10.1016/0960-0779(92)90032-i
- Hosaka, R., Sakai, Y., Aihara, K., 10.1007/978-3-642-10684-2_45, Lect. Notes Comput. Sci. 5864 (2009), 401-408. DOI10.1007/978-3-642-10684-2_45
- Hrg, D., 10.1016/j.neunet.2012.12.010, Neural Netw. 40 (2013), 73-79. Zbl1283.92017DOI10.1016/j.neunet.2012.12.010
- Khalil, H. K., Nonlinear Systems. Third edition., Prentice Hall, Upper Saddle River 2002.
- Kuntanapreeda, S., 10.1016/j.physleta.2009.06.006, Phys. Lett. A 373 (2009), 2837-2840. Zbl1233.93047DOI10.1016/j.physleta.2009.06.006
- Li, H. Y., Hu, Y. A., Wang, R. Q., Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties., Kybernetika 49 (2013), 554-567. MR3117914
- Li, R., He, Z., 10.1007/s11071-013-1161-8, Nonlinear Dynam. 76 (2014), 697-715. Zbl1319.37024MR3189203DOI10.1007/s11071-013-1161-8
- Liang, H., Wang, Z., Yue, Z., Lu, R., Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication., Kybernetika 48 (2012), 190-205. Zbl1256.93084MR2954320
- Liu, X., Liu, S., 10.1007/s11071-011-0030-6, Nonlinear Dynam. 67 (2012), 847-857. Zbl1245.34047MR2869243DOI10.1007/s11071-011-0030-6
- Lü, J., Zhou, T., Chen, G., Yang, X., 10.1063/1.1478079, Chaos 12 (2002), 344-349. DOI10.1063/1.1478079
- Ma, M. H., Zhang, H., Cai, J. P., Zhou, J., Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch., Kybernetika 49 (2013), 539-553. Zbl1274.70039MR3117913
- Meyer, T., Walker, C., Cho, R. Y., Olson, C. R., 10.1038/nn.3794, Nat. Neurosci. 17 (2014), 1388-1394. DOI10.1038/nn.3794
- Nguyena, L. H., Hong, K. S., 10.1016/j.matcom.2011.10.005, Math. Comput. Simulations 82 (2011), 590-603. MR2877386DOI10.1016/j.matcom.2011.10.005
- Pecora, L. M., Carroll, T. L., 10.1103/physrevlett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. MR1038263DOI10.1103/physrevlett.64.821
- Sadeghi, S., Valizadeh, A., 10.1007/s10827-013-0461-9, J. Comput. Neurosci. 36 (2014), 55-66. MR3160746DOI10.1007/s10827-013-0461-9
- Sedov, A. S., Medvednik, R. S., Raeva, S. N., 10.1134/s0362119714010137, Hum. Physiol. 40 (2014), 1-7. DOI10.1134/s0362119714010137
- Shen, C. W., Yu, S. M., Lu, J. H., Chen, G. R., 10.1109/tcsi.2013.2283994, IEEE Trans. Circuits Syst. I: Reg. Papers 61 (2014), 854-864. DOI10.1109/tcsi.2013.2283994
- Shen, C. W., Yu, S. M., Lu, J. H., Chen, G. R., 10.1109/tcsi.2014.2304655, IEEE Trans. Circuits Syst. I: Reg. Papers 61 (2014), 2380-2389. DOI10.1109/tcsi.2014.2304655
- Tan, X. H., Zhang, J. Y., Yang, Y. R., 10.1016/s0960-0779(02)00153-4, Chaos Soliton Fract. 16 (2003), 37-45. Zbl1035.34025MR1941155DOI10.1016/s0960-0779(02)00153-4
- Wang, J. G., Cai, J. P., Ma, M. H., Feng, J. C., Synchronization with error bound of non-identical forced oscillators., Kybernetika 44 (2008), 534-545. Zbl1173.70009MR2459071
- Wang, Q., Lu, Q., Chen, G., Guo, D., 10.1016/j.physleta.2006.03.017, Phys. Lett. A 356 (2006), 17-25. DOI10.1016/j.physleta.2006.03.017
- Wang, C. N., Ma, J., Tang, J., Li, Y. L., 10.1088/0253-6102/53/2/32, Commun. Theor. Phys. 53 (2010), 382-388. DOI10.1088/0253-6102/53/2/32
- Wei, Z., Wang, Z., Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium., Kybernetika 49 (2013), 359-374. Zbl1276.34043MR3085401
- Wu, X. F., Zhao, Y., Wang, M. H., Global synchronization of chaotic Lur'e systems via replacing variables control., Kybernetika 44 (2008), 571-584. Zbl1175.37040MR2459074
- Wu, A. L., Zeng, Z. G., 10.1016/j.neunet.2013.09.002, Neural Netw. 49 (2014), 11-18. Zbl1296.93153DOI10.1016/j.neunet.2013.09.002
Citations in EuDML Documents
top- Zhi-wei Li, Zhe-yong Qiu, Wei-gang Sun, Pinning lag synchronization between two dynamical networks with non-derivative and derivative couplings
- Zhi-cai Ma, Jie Wu, Yong-zheng Sun, Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.