A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems
Applications of Mathematics (2014)
- Volume: 59, Issue: 3, page 241-256
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLinß, Torsten. "A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems." Applications of Mathematics 59.3 (2014): 241-256. <http://eudml.org/doc/261112>.
@article{Linß2014,
abstract = {FEM discretizations of arbitrary order $r$ are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.},
author = {Linß, Torsten},
journal = {Applications of Mathematics},
keywords = {reaction-diffusion problem; singular perturbation; mesh adaptation; reaction-diffusion problem; singular perturbation; mesh adaptation; finite element method},
language = {eng},
number = {3},
pages = {241-256},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems},
url = {http://eudml.org/doc/261112},
volume = {59},
year = {2014},
}
TY - JOUR
AU - Linß, Torsten
TI - A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 3
SP - 241
EP - 256
AB - FEM discretizations of arbitrary order $r$ are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.
LA - eng
KW - reaction-diffusion problem; singular perturbation; mesh adaptation; reaction-diffusion problem; singular perturbation; mesh adaptation; finite element method
UR - http://eudml.org/doc/261112
ER -
References
top- Bakhvalov, N. S., On the optimization of the methods for solving boundary value problems in the presence of a boundary layer, Zh. Vychisl. Mat. Mat. Fiz. 9 (1969), 841-859 Russian. (1969) MR0255066
- Chadha, N. M., Kopteva, N., 10.1093/imanum/drp033, IMA J. Numer. Anal. 31 (2011), 188-211. (2011) Zbl1211.65099MR2755942DOI10.1093/imanum/drp033
- Boor, C. de, Good approximation by splines with variable knots, Spline Functions and Approximation Theory. Proceedings of the symposium held at the University of Alberta, Edmonton, 1972 A. Meir et al. International Series of Numerical Mathematics 21 Birkhäuser, Basel (1973), 57-72. (1973) Zbl0255.41007MR0403169
- Demlow, A., Lakkis, O., Makridakis, C., 10.1137/070708792, SIAM J. Numer. Anal. 47 2157-2176 (2009). (2009) Zbl1196.65153MR2519598DOI10.1137/070708792
- Kopteva, N., 10.1093/imanum/drl020, IMA J. Numer. Anal. 27 576-592 (2007). (2007) Zbl1149.65066MR2337581DOI10.1093/imanum/drl020
- Kopteva, N., Linß, T., 10.1137/110830563, SIAM J. Numer. Anal. 51 (2013), 1494-1524. (2013) Zbl1281.65121MR3056758DOI10.1137/110830563
- Kopteva, N., Linß, T., 10.1007/978-3-642-41515-9_5, Numerical Analysis and its Applications. 5th international conference, NAA 2012, Lozenetz, Bulgaria, 2012. Revised selected papers I. Dimov et al. Lecture Notes in Computer Science 8236 Springer, Berlin (2013), 50-61. (2013) MR3149972DOI10.1007/978-3-642-41515-9_5
- Kopteva, N., Stynes, M., 10.1137/S003614290138471X, SIAM J. Numer. Anal. 39 (2001), 1446-1467. (2001) Zbl1012.65076MR1870850DOI10.1137/S003614290138471X
- Kunert, G., 10.1007/s00607-002-1457-x, Computing 69 (2002), 265-272. (2002) Zbl1239.65055MR1954563DOI10.1007/s00607-002-1457-x
- Linß, T., Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Lecture Notes in Mathematics 1985 Springer, Berlin (2010). (2010) Zbl1202.65120MR2583792
- Linß, T., 10.1007/s10543-007-0118-z, BIT 47 (2007), 379-391. (2007) Zbl1221.65175MR2334045DOI10.1007/s10543-007-0118-z
- Melenk, J. M., 10.1007/b84212, Lecture Notes in Mathematics 1796 Springer, Berlin (2002). (2002) Zbl1021.65055MR1939620DOI10.1007/b84212
- Nochetto, R. H., Schmidt, A., Siebert, K. G., Veeser, A., 10.1007/s00211-006-0027-0, Numer. Math. 104 (2006), 515-538. (2006) Zbl1104.65107MR2249676DOI10.1007/s00211-006-0027-0
- Roos, H.-G., Schopf, M., Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems, Z. Angew. Math. Mech., in press.
- Roos, H.-G., Stynes, M., Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems 2nd ed, Springer Series in Computational Mathematics 24 Springer, Berlin (2008). (2008) Zbl1155.65087MR2454024
- Shishkin, G. I., Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations, Russian Academy of Sciences, Ural Section Ekaterinburg (1992), Russian. (1992)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.