Numerical algorithm for nonsmooth stabilization of triangular form systems

Sergej Čelikovský

Kybernetika (1996)

  • Volume: 32, Issue: 3, page 261-274
  • ISSN: 0023-5954

How to cite

top

Čelikovský, Sergej. "Numerical algorithm for nonsmooth stabilization of triangular form systems." Kybernetika 32.3 (1996): 261-274. <http://eudml.org/doc/28671>.

@article{Čelikovský1996,
author = {Čelikovský, Sergej},
journal = {Kybernetika},
keywords = {nonsmooth stabilization; singular triangular form; linearization; regularization},
language = {eng},
number = {3},
pages = {261-274},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Numerical algorithm for nonsmooth stabilization of triangular form systems},
url = {http://eudml.org/doc/28671},
volume = {32},
year = {1996},
}

TY - JOUR
AU - Čelikovský, Sergej
TI - Numerical algorithm for nonsmooth stabilization of triangular form systems
JO - Kybernetika
PY - 1996
PB - Institute of Information Theory and Automation AS CR
VL - 32
IS - 3
SP - 261
EP - 274
LA - eng
KW - nonsmooth stabilization; singular triangular form; linearization; regularization
UR - http://eudml.org/doc/28671
ER -

References

top
  1. D. Aeyels, Local and global controllability for nonlinear systems, Systems Control Lett. 5 (1984), 19-26. (1984) Zbl0552.93009MR0768710
  2. D. Aeyels, Stabilization of a class of nonlinear systems by a smooth feedback control, Systems Control Lett. 5 (1985), 289-294. (1985) Zbl0569.93056MR0791542
  3. P. Brunovský, A classification of linear controllable systems, Kybernetika 6 (1970), 173-180. (1970) MR0284247
  4. J. M. Coron L. Praly, A. Teel, Feedback stabilization of nonlinear systems: sufficient conditions and Lyapunov and input-output techniques, In: Trends in Control: A European Perspective (A. Isidori ed.), Springer-Verlag, London 1995, pp. 293-348. (1995) MR1448452
  5. S. Čelikovský, Topological linearization of nonlinear systems: Application to the nonsmooth stabilization, In: Proc. of the 2nd ECC'93, Groningen 1993, pp. 41-44. (1993) 
  6. S. Čelikovský, Global linearization of nonlinear systems -- a survey, In: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publ. 32 (1995), 123-137. (1995) MR1364424
  7. S. Čelikovský, Topological equivalence and topological linearization of controlled dynamical systems, Kybernetika 31 (1995), 141-150. (1995) MR1334506
  8. S. Čelikovský, On the relation between nonsmooth linearization of continuous and discrete time systems, In: Proc. of the third ECC'95, Rome 1995, pp. 643-648. (1995) 
  9. S. Čelikovský, H. Nijmeijer, Equivalence of nonlinear systems to triangular form: the singular case, Systems Control Lett. 27 (1996), 3, 135-144. (1996) MR1387097
  10. D. Claude, Everything you always wanted to know about linearization but were afraid to ask, In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazenwinkel, eds.), Reidel, Dordrecht 1986, pp. 181-226. (1986) Zbl0607.93027MR0862326
  11. M. Fliess, F. Messager, Vers une stabilisation non lineaire discontinue, In: Anal. Optimiz. Syst. (A. Bensoussau and J. L. Lions, eds., Lecture Notes Control Information Sciences 144), Springer-Verlag, New York 1990, pp. 778-787. (1990) Zbl0716.93046
  12. B. Jakubczyk, W. Respondek, On linearization of control systems, Bull. Ac. Pol. Sci., Ser. Sci. Math. 28 (1980), 517-522. (1980) Zbl0489.93023MR0629027
  13. A. Isidori, Nonlinear Control Systems: An Introduction, Springer-Verlag, Berlin 1989. (1989) MR1229759
  14. R. R. Kadiyala, A tool box for approximate linearization of nonlinear systems, IEEE Control Systems Magazine 1993, 47-57. (1993) 
  15. T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, N.J. 1980. (1980) Zbl0454.93001MR0569473
  16. M. Kawski, Stabilization of nonlinear systems in the plane, Systems Control Lett. 12 (1989), 169-175. (1989) Zbl0666.93103MR0985567
  17. H. Nijmeijer, A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag, Berlin 1990. (1990) Zbl0701.93001MR1047663
  18. C. Simoes H. Nijmeijer, J. Tsinias, Nonsmooth stabilizability and feedback linearization of discrete-time nonlinear systems, Memorandum No. 1190, University of Twente, Netherlands; Internat. J. Robust and Nonlinear Control, to appear. MR1388127
  19. E. D. Sontag, Feedback stabilization of nonlinear systems, In: Robust Control of Linear Systems and Nonlinear Control -- Proc. Internat. Symp. MTNS-89, Vol. II (M.A. Kaashoek, J. H. van Schuppen and A. C. M. Ran, eds.), Birkhäuser, Boston 1990, pp. 61-81. (1990) Zbl0735.93063MR1115377
  20. W. Respondek, Geometric methods in linearization of control systems, Banach Center Publ. 14 (1985), 453-467. (1985) Zbl0573.93028MR0851243
  21. W. Respondek, Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear control systems, In: Algebraic and Geometric Methods in Nonlinear Control Theory (M. Fliess and M. Hazewinkel, eds.), Reidel, Dordrecht 1986, pp. 257-283. (1986) Zbl0605.93033MR0862329
  22. L. A. Zadeh, C. A. Desoer, Linear Systems Theory, McGraw-Hill, New York 1963. (1963) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.