# Global linearization of nonlinear systems - A survey

Banach Center Publications (1995)

- Volume: 32, Issue: 1, page 123-137
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topČelikovský, Sergej. "Global linearization of nonlinear systems - A survey." Banach Center Publications 32.1 (1995): 123-137. <http://eudml.org/doc/262754>.

@article{Čelikovský1995,

abstract = {A survey of the global linearization problem is presented. Known results are divided into two groups: results for general affine nonlinear systems and for bilinear systems. In the latter case stronger results are available. A comparision of various linearizing transformations is performed. Numerous illustrative examples are included.},

author = {Čelikovský, Sergej},

journal = {Banach Center Publications},

keywords = {exact linearization; nonlinear control; global linearization; affine control systems; transformations},

language = {eng},

number = {1},

pages = {123-137},

title = {Global linearization of nonlinear systems - A survey},

url = {http://eudml.org/doc/262754},

volume = {32},

year = {1995},

}

TY - JOUR

AU - Čelikovský, Sergej

TI - Global linearization of nonlinear systems - A survey

JO - Banach Center Publications

PY - 1995

VL - 32

IS - 1

SP - 123

EP - 137

AB - A survey of the global linearization problem is presented. Known results are divided into two groups: results for general affine nonlinear systems and for bilinear systems. In the latter case stronger results are available. A comparision of various linearizing transformations is performed. Numerous illustrative examples are included.

LA - eng

KW - exact linearization; nonlinear control; global linearization; affine control systems; transformations

UR - http://eudml.org/doc/262754

ER -

## References

top- [1] W. M. Boothby, Some comments on global linearization of nonlinear systems, Systems Control Lett. 4 (1984), 143-149. Zbl0538.93027
- [2] W. M. Boothby, Global feedback linearizability of locally linearizable systems, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 243-246.
- [3] R. W. Brockett, Feedback invariants for nonlinear systems, Prepr. IFAC Congr., Helsinki, Finland, 1978, 1115-1120.
- [4] R. W. Brockett, On the algebraic structure of bilinear systems, in: Theory and Applications of Variable Structure Systems, R. R. Mohler and A. Ruberti (eds.), Academic Press, New York, 1972, 153-168.
- [5] P. Brunovský, A classification of linear controllable systems, Kybernetika 1970, 173-180. Zbl0199.48202
- [6] C. Byrnes and A. Isidori, Asymptotic stabilization of minimal phase nonlinear systems, IEEE Trans. Automat. Contr. 36 (1991), 1122-1137. Zbl0758.93060
- [7] B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization, Systems Control Lett. 13 (1989), 143-151. Zbl0684.93043
- [8] B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic state feedback linearization, SIAM J. Control Optim. 29 (1991), 38-57. Zbl0739.93021
- [9] S. Čelikovský, On the global linearization of bilinear systems, Systems Control Lett. 15 (1990), 433-439. Zbl0732.93012
- [10] S. Čelikovský, On the global linearization of nonhomogeneous bilinear systems, ibid. 18 (1992), 397-402. Zbl0763.93028
- [11] S. Čelikovský, On the relation between local and global linearization of bilinear systems, in: Systems Structure and Control, V. Strejc (ed.), Pergamon Press, Oxford, 1992, 172-175.
- [12] S. Čelikovský, Global state linearization of multi-input bilinear systems, in: Proc. 1st Asian Control Conf., Tokyo, July 1994, Vol. 3, 133-136.
- [13] D. Cheng, T. J. Tarn and A. Isidori, Global linearization of nonlinear systems, in: Proc. 23rd. IEEE Conference on Decision and Control, 1984, 74-83.
- [14] D. Cheng, T. J. Tarn and A. Isidori, Global external linearization of nonlinear systems via feedback, IEEE Trans. Automat Control AC-30 (1985), 808-811. Zbl0666.93054
- [15] D. Cheng, A. Isidori, W. Respondek and T. J. Tarn, Exact linearization of nonlinear systems with outputs, Math. Systems Theory, 21 (1988), 63-83. Zbl0666.93019
- [16] D. Claude, Everything you always wanted to know about linearization but were afraid to ask, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 181-226.
- [17] W. Dayawansa, W. M. Boothby and D. L. Elliot, Global state and feedback equivalence of nonlinear systems, Systems Control Lett. 6 (1985), 229-234. Zbl0577.93029
- [18] W. Dayawansa, W. M. Boothby and D. L. Elliot, Global linearization by feedback and state transformations, in: Proc. 24th IEEE Conf. on Decision and Control, Dec. 1985, 1042-1049.
- [19] L. R. Hunt, R. Su and G. Meyer, Global transformation of nonlinear systems, IEEE Trans. Automat. Control AC-28 (1983), 24-31. Zbl0502.93036
- [20] A. Isidori, J. A. Krener, C. Gori Giorgi and S. Monaco, Nonlinear Decoupling via feedback: a differential geometric approach, IEEE Trans. Automat. Control AC-26 (1981), 331-345. Zbl0481.93037
- [21] A. Isidori and A. Ruberti, On the synthesis of linear input-output responses for nonlinear systems, Systems Control Lett. 4 (1984), 17-22. Zbl0551.93032
- [22] A. Isidori, Nonlinear Control Systems: An Introduction, 2nd ed., Springer, Berlin, 1989.
- [23] B. Jakubczyk and W. Respondek, On linearization of control systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 517-522. Zbl0489.93023
- [24] A. J. Krener, On the equivalence of control systems and the linearization of nonlinear systems, SIAM J. Control Optim. 11 (1973), 670-676. Zbl0243.93009
- [25] A. J. Krener, A decomposition theory for differentiable systems, ibid. 15 (1977), 813-829. Zbl0361.93023
- [26] A. J. Krener and A. Isidori, Linearization by output injection and nonlinear oservers, Systems Control Lett. 3 (1983), 47-52. Zbl0524.93030
- [27] R. Marino, W. Respondek and A. J. van der Shaft, Equivalence of nonlinear control systems to input-output prime forms, SIAM J. Control Optim. 32 (1994), 387-407. Zbl0796.93049
- [28] R. Marino, W. Respondek and A. J. van der Shaft, Almost disturbance decoupling for single-input single output nonlinear systems, IEEE Trans. Automat. Control 34 (1989), 1013-1017. Zbl0693.93030
- [29] H. Nijmeijer and A. J. van der Shaft, Nonlinear Dynamical Control Systems, Springer, Berlin, 1990.
- [30] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957). Zbl0178.26502
- [31] W. Respondek, Geometric methods in linearization of control systems, in: Mathematical Control Theory, Banach Center Publ. 14, PWN Warszawa, 1985, 453-467. Zbl0573.93028
- [32] W. Respondek, Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear systems, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 257-284. Zbl0605.93033
- [33] M. Sampei and K. Furuta, On time scaling for nonlinear systems: application to linearization, IEEE Trans. Automat. Control AC-31 (1986), 459-462. Zbl0611.93037
- [34] R. Su (1982), On the linear equivalents of nonlinear systems, Systems Control Lett. 2 (1982), 48-52. Zbl0482.93041
- [35] H. J. Sussmann, An extension of a theorem of Nagano on transitive Lie algebras, Proc. Amer. Math. Soc. 45 (1974), 349-356. Zbl0301.58003

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.