Global linearization of nonlinear systems - A survey

Sergej Čelikovský

Banach Center Publications (1995)

  • Volume: 32, Issue: 1, page 123-137
  • ISSN: 0137-6934

Abstract

top
A survey of the global linearization problem is presented. Known results are divided into two groups: results for general affine nonlinear systems and for bilinear systems. In the latter case stronger results are available. A comparision of various linearizing transformations is performed. Numerous illustrative examples are included.

How to cite

top

Čelikovský, Sergej. "Global linearization of nonlinear systems - A survey." Banach Center Publications 32.1 (1995): 123-137. <http://eudml.org/doc/262754>.

@article{Čelikovský1995,
abstract = {A survey of the global linearization problem is presented. Known results are divided into two groups: results for general affine nonlinear systems and for bilinear systems. In the latter case stronger results are available. A comparision of various linearizing transformations is performed. Numerous illustrative examples are included.},
author = {Čelikovský, Sergej},
journal = {Banach Center Publications},
keywords = {exact linearization; nonlinear control; global linearization; affine control systems; transformations},
language = {eng},
number = {1},
pages = {123-137},
title = {Global linearization of nonlinear systems - A survey},
url = {http://eudml.org/doc/262754},
volume = {32},
year = {1995},
}

TY - JOUR
AU - Čelikovský, Sergej
TI - Global linearization of nonlinear systems - A survey
JO - Banach Center Publications
PY - 1995
VL - 32
IS - 1
SP - 123
EP - 137
AB - A survey of the global linearization problem is presented. Known results are divided into two groups: results for general affine nonlinear systems and for bilinear systems. In the latter case stronger results are available. A comparision of various linearizing transformations is performed. Numerous illustrative examples are included.
LA - eng
KW - exact linearization; nonlinear control; global linearization; affine control systems; transformations
UR - http://eudml.org/doc/262754
ER -

References

top
  1. [1] W. M. Boothby, Some comments on global linearization of nonlinear systems, Systems Control Lett. 4 (1984), 143-149. Zbl0538.93027
  2. [2] W. M. Boothby, Global feedback linearizability of locally linearizable systems, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 243-246. 
  3. [3] R. W. Brockett, Feedback invariants for nonlinear systems, Prepr. IFAC Congr., Helsinki, Finland, 1978, 1115-1120. 
  4. [4] R. W. Brockett, On the algebraic structure of bilinear systems, in: Theory and Applications of Variable Structure Systems, R. R. Mohler and A. Ruberti (eds.), Academic Press, New York, 1972, 153-168. 
  5. [5] P. Brunovský, A classification of linear controllable systems, Kybernetika 1970, 173-180. Zbl0199.48202
  6. [6] C. Byrnes and A. Isidori, Asymptotic stabilization of minimal phase nonlinear systems, IEEE Trans. Automat. Contr. 36 (1991), 1122-1137. Zbl0758.93060
  7. [7] B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization, Systems Control Lett. 13 (1989), 143-151. Zbl0684.93043
  8. [8] B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic state feedback linearization, SIAM J. Control Optim. 29 (1991), 38-57. Zbl0739.93021
  9. [9] S. Čelikovský, On the global linearization of bilinear systems, Systems Control Lett. 15 (1990), 433-439. Zbl0732.93012
  10. [10] S. Čelikovský, On the global linearization of nonhomogeneous bilinear systems, ibid. 18 (1992), 397-402. Zbl0763.93028
  11. [11] S. Čelikovský, On the relation between local and global linearization of bilinear systems, in: Systems Structure and Control, V. Strejc (ed.), Pergamon Press, Oxford, 1992, 172-175. 
  12. [12] S. Čelikovský, Global state linearization of multi-input bilinear systems, in: Proc. 1st Asian Control Conf., Tokyo, July 1994, Vol. 3, 133-136. 
  13. [13] D. Cheng, T. J. Tarn and A. Isidori, Global linearization of nonlinear systems, in: Proc. 23rd. IEEE Conference on Decision and Control, 1984, 74-83. 
  14. [14] D. Cheng, T. J. Tarn and A. Isidori, Global external linearization of nonlinear systems via feedback, IEEE Trans. Automat Control AC-30 (1985), 808-811. Zbl0666.93054
  15. [15] D. Cheng, A. Isidori, W. Respondek and T. J. Tarn, Exact linearization of nonlinear systems with outputs, Math. Systems Theory, 21 (1988), 63-83. Zbl0666.93019
  16. [16] D. Claude, Everything you always wanted to know about linearization but were afraid to ask, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 181-226. 
  17. [17] W. Dayawansa, W. M. Boothby and D. L. Elliot, Global state and feedback equivalence of nonlinear systems, Systems Control Lett. 6 (1985), 229-234. Zbl0577.93029
  18. [18] W. Dayawansa, W. M. Boothby and D. L. Elliot, Global linearization by feedback and state transformations, in: Proc. 24th IEEE Conf. on Decision and Control, Dec. 1985, 1042-1049. 
  19. [19] L. R. Hunt, R. Su and G. Meyer, Global transformation of nonlinear systems, IEEE Trans. Automat. Control AC-28 (1983), 24-31. Zbl0502.93036
  20. [20] A. Isidori, J. A. Krener, C. Gori Giorgi and S. Monaco, Nonlinear Decoupling via feedback: a differential geometric approach, IEEE Trans. Automat. Control AC-26 (1981), 331-345. Zbl0481.93037
  21. [21] A. Isidori and A. Ruberti, On the synthesis of linear input-output responses for nonlinear systems, Systems Control Lett. 4 (1984), 17-22. Zbl0551.93032
  22. [22] A. Isidori, Nonlinear Control Systems: An Introduction, 2nd ed., Springer, Berlin, 1989. 
  23. [23] B. Jakubczyk and W. Respondek, On linearization of control systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 517-522. Zbl0489.93023
  24. [24] A. J. Krener, On the equivalence of control systems and the linearization of nonlinear systems, SIAM J. Control Optim. 11 (1973), 670-676. Zbl0243.93009
  25. [25] A. J. Krener, A decomposition theory for differentiable systems, ibid. 15 (1977), 813-829. Zbl0361.93023
  26. [26] A. J. Krener and A. Isidori, Linearization by output injection and nonlinear oservers, Systems Control Lett. 3 (1983), 47-52. Zbl0524.93030
  27. [27] R. Marino, W. Respondek and A. J. van der Shaft, Equivalence of nonlinear control systems to input-output prime forms, SIAM J. Control Optim. 32 (1994), 387-407. Zbl0796.93049
  28. [28] R. Marino, W. Respondek and A. J. van der Shaft, Almost disturbance decoupling for single-input single output nonlinear systems, IEEE Trans. Automat. Control 34 (1989), 1013-1017. Zbl0693.93030
  29. [29] H. Nijmeijer and A. J. van der Shaft, Nonlinear Dynamical Control Systems, Springer, Berlin, 1990. 
  30. [30] R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22 (1957). Zbl0178.26502
  31. [31] W. Respondek, Geometric methods in linearization of control systems, in: Mathematical Control Theory, Banach Center Publ. 14, PWN Warszawa, 1985, 453-467. Zbl0573.93028
  32. [32] W. Respondek, Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear systems, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 257-284. Zbl0605.93033
  33. [33] M. Sampei and K. Furuta, On time scaling for nonlinear systems: application to linearization, IEEE Trans. Automat. Control AC-31 (1986), 459-462. Zbl0611.93037
  34. [34] R. Su (1982), On the linear equivalents of nonlinear systems, Systems Control Lett. 2 (1982), 48-52. Zbl0482.93041
  35. [35] H. J. Sussmann, An extension of a theorem of Nagano on transitive Lie algebras, Proc. Amer. Math. Soc. 45 (1974), 349-356. Zbl0301.58003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.