Jacobian quotients of polynomial mappings

Enrique Artal Bartolo[1]; Philippe Cassou-Noguès[2]; Hélène Maugendre

  • [1] Universidad de Zaragoza, Departamento de Matemáticas, 50009 Zaragoza (Espagne), Université Bordeaux I, Mathématiques Pures de Bordeaux, 351 cours de la Libération, 33405 Talence Cedex (France)
  • [2] Université Grenoble I, Institut Fourier, UMR 5582 du CNRS, BP 74, 38402 Saint-Martin d'Hères, France

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 2, page 399-428
  • ISSN: 0373-0956

Abstract

top
Let φ : = ( f , g ) : 2 2 where f and g are polynomial maps. A relationship is established between the following two objects: on the one hand, the Newton polygon of the union of the discriminant curve of φ and its non-properness locus, and on the other, the topological type of the link at infinity of the affine curves f - 1 ( 0 ) and g - 1 ( 0 ) . Some consequences related to the Jacobian Conjecture are obtained.

How to cite

top

Artal Bartolo, Enrique, Cassou-Noguès, Philippe, and Maugendre, Hélène. "Quotients jacobiens d'applications polynomiales." Annales de l’institut Fourier 53.2 (2003): 399-428. <http://eudml.org/doc/116041>.

@article{ArtalBartolo2003,
abstract = {Soit $\phi :=(f,g) : \{\mathbb \{C\}\}^2\rightarrow \{\mathbb \{C\}\}^2$ où $f$ et $g$ sont des applications polynomiales. Nous établissons le lien qui existe entre le polygone de Newton de la courbe réunion du discriminant et du lieu de non-propreté de $\phi $ et la topologie des entrelacs à l’infini des courbes affines $f^\{-1\}(0)$ et $g^\{-1\}(0)$. Nous en déduisons alors des conséquences liées à la conjecture du jacobien.},
affiliation = {Universidad de Zaragoza, Departamento de Matemáticas, 50009 Zaragoza (Espagne), Université Bordeaux I, Mathématiques Pures de Bordeaux, 351 cours de la Libération, 33405 Talence Cedex (France); Université Grenoble I, Institut Fourier, UMR 5582 du CNRS, BP 74, 38402 Saint-Martin d'Hères, France},
author = {Artal Bartolo, Enrique, Cassou-Noguès, Philippe, Maugendre, Hélène},
journal = {Annales de l’institut Fourier},
keywords = {polynomial mappings; jacobian quotients; Newton polygon; graph manifolds},
language = {fre},
number = {2},
pages = {399-428},
publisher = {Association des Annales de l'Institut Fourier},
title = {Quotients jacobiens d'applications polynomiales},
url = {http://eudml.org/doc/116041},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Artal Bartolo, Enrique
AU - Cassou-Noguès, Philippe
AU - Maugendre, Hélène
TI - Quotients jacobiens d'applications polynomiales
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 2
SP - 399
EP - 428
AB - Soit $\phi :=(f,g) : {\mathbb {C}}^2\rightarrow {\mathbb {C}}^2$ où $f$ et $g$ sont des applications polynomiales. Nous établissons le lien qui existe entre le polygone de Newton de la courbe réunion du discriminant et du lieu de non-propreté de $\phi $ et la topologie des entrelacs à l’infini des courbes affines $f^{-1}(0)$ et $g^{-1}(0)$. Nous en déduisons alors des conséquences liées à la conjecture du jacobien.
LA - fre
KW - polynomial mappings; jacobian quotients; Newton polygon; graph manifolds
UR - http://eudml.org/doc/116041
ER -

References

top
  1. A. Assi, Sur l'intersection des courbes méromorphes, C. R. Acad. Sci. Paris, Sér. I Math. 329 (1999), 625-628 Zbl0962.14023MR1717121
  2. P. Cassou-Noguès, Diagrams of algebraic curves, (2000) 
  3. E. Artal, P. Cassou-Noguès, A. Dimca, Topology of complex polynomials via polar curves, Kodai Math. J. 22 (1999), 131-139 Zbl0939.32027MR1679243
  4. Nguyen Van Chau, Non-zero constant Jacobian polynomial maps of 2 , Ann. Polon. Math. 71 (1999), 287-310 Zbl0942.14032MR1704304
  5. D. Eisenbud, W.D. Neumann, Three-dimensional link theory and invariance of plane curve singularities, no 110 (1985), Princeton University Press, Princeton NJ Zbl0628.57002
  6. J. Gwoździewicz, A. PŁoski, Formulae for the singularities at infinity of plane algebraic curves, Effective methods in algebraic and analytic geometry, 2000 (Kraków), MR1 886 934 39 (2001), 109-133 Zbl1015.32026
  7. W. Jaco, Lectures on three-manifold topology, (1980), American Mathematical Society, Providence, R.I. Zbl0433.57001MR565450
  8. Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35 Zbl0946.14039MR1717542
  9. D.T. Lê, H. Maugendre, C. Weber, Geometry of critical loci, J. London Math. Soc. (2) 63 (2001), 533-552 Zbl1018.32027MR1825974
  10. D.T. Lê, C. Weber, A geometrical approach to the Jacobian conjecture for n = 2 , Kodai Math. J. 17 (1994), 374-381 Zbl1128.14301MR1296904
  11. C. Lescop, Global surgery formula for the Casson-Walker invariant, (1996), Princeton University Press, Princeton, NJ Zbl0949.57008MR1372947
  12. H. Maugendre, Discriminant of a germ Φ : ( 2 , 0 ) ( 2 , 0 ) and Seifert fibred manifolds, J. London Math. Soc. (2) 59 (1999), 207-226 Zbl0941.58027MR1688499
  13. T.T. Moh, On the Jacobian conjecture and the configurations of roots, J. reine angew. Math. 340 (1983), 140-212 Zbl0525.13011MR691964
  14. W.D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299-344 Zbl0546.57002MR632532
  15. W.D. Neumann, P. Norbury, Rational polynomials of simple type, Pacific J. Math. 204 (2002), 177-207 Zbl1055.14062MR1905197
  16. P. Russell, Good and bad field generators, J. Math. Kyoto Univ. 17 (1977), 319-331 Zbl0367.12013MR444627
  17. B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse, Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972 no 7-8 (1973), 285-362, Soc. Math. France, Paris Zbl0295.14003
  18. F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I, Invent. Math. 3 (1967), 308-333 Zbl0168.44503
  19. F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten II, Invent. Math. 4 (1967), 87-117 Zbl0168.44503MR235576

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.