Quantum scattering near the lowest Landau threshold for a Schrödinger operator with a constant magnetic field

Michael Melgaard

Open Mathematics (2003)

  • Volume: 1, Issue: 4, page 477-509
  • ISSN: 2391-5455

Abstract

top
For fixed magnetic quantum number m results on spectral properties and scattering theory are given for the three-dimensional Schrödinger operator with a constant magnetic field and an axisymmetrical electric potential V. In various, mostly singular settings, asymptotic expansions for the resolvent of the Hamiltonian H m+Hom+V are deduced as the spectral parameter tends to the lowest Landau threshold. Furthermore, scattering theory for the pair (H m, H om) is established and asymptotic expansions of the scattering matrix are derived as the energy parameter tends to the lowest Landau threshold.

How to cite

top

Michael Melgaard. "Quantum scattering near the lowest Landau threshold for a Schrödinger operator with a constant magnetic field." Open Mathematics 1.4 (2003): 477-509. <http://eudml.org/doc/268892>.

@article{MichaelMelgaard2003,
abstract = {For fixed magnetic quantum number m results on spectral properties and scattering theory are given for the three-dimensional Schrödinger operator with a constant magnetic field and an axisymmetrical electric potential V. In various, mostly singular settings, asymptotic expansions for the resolvent of the Hamiltonian H m+Hom+V are deduced as the spectral parameter tends to the lowest Landau threshold. Furthermore, scattering theory for the pair (H m, H om) is established and asymptotic expansions of the scattering matrix are derived as the energy parameter tends to the lowest Landau threshold.},
author = {Michael Melgaard},
journal = {Open Mathematics},
keywords = {47N20; 35J10 35P25 47F05 81U05},
language = {eng},
number = {4},
pages = {477-509},
title = {Quantum scattering near the lowest Landau threshold for a Schrödinger operator with a constant magnetic field},
url = {http://eudml.org/doc/268892},
volume = {1},
year = {2003},
}

TY - JOUR
AU - Michael Melgaard
TI - Quantum scattering near the lowest Landau threshold for a Schrödinger operator with a constant magnetic field
JO - Open Mathematics
PY - 2003
VL - 1
IS - 4
SP - 477
EP - 509
AB - For fixed magnetic quantum number m results on spectral properties and scattering theory are given for the three-dimensional Schrödinger operator with a constant magnetic field and an axisymmetrical electric potential V. In various, mostly singular settings, asymptotic expansions for the resolvent of the Hamiltonian H m+Hom+V are deduced as the spectral parameter tends to the lowest Landau threshold. Furthermore, scattering theory for the pair (H m, H om) is established and asymptotic expansions of the scattering matrix are derived as the energy parameter tends to the lowest Landau threshold.
LA - eng
KW - 47N20; 35J10 35P25 47F05 81U05
UR - http://eudml.org/doc/268892
ER -

References

top
  1. [1] M. Abramovitz and I. Stegun: Handbook of Mathematical Functions, Dover Publications. New York, 1972. 
  2. [2] S. Albeverio, D. Bollé, F. Gesztesy, R. Hoegh-Krohn: “Low-energy parameters in nonrelativistic scattering theory”, Ann. Physics, Vol. 148, (1983), pp.308–326. http://dx.doi.org/10.1016/0003-4916(83)90242-7 Zbl0542.35056
  3. [3] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn: “The low energy expansion in nonrelativistic scattering theory”, Ann. Inst. H. Poincaré Sect. A (N.S.), Vol. 37, (1982), pp. 1–28. Zbl0528.35076
  4. [4] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, L. Streit: “Charged particles with short range interactions”, Ann. Inst. H. Poincaré Sect. A (N.S.), Vol. 38, (1983), pp. 263–293. Zbl0555.35111
  5. [5] J.E. Avron, I. Herbst, B. Simon: “Schrödinger operators with magnetic fields. I. General interactions”, Duke Math. J., Vol. 45, (1978), pp. 847–883. http://dx.doi.org/10.1215/S0012-7094-78-04540-4 Zbl0399.35029
  6. [6] Ju. M. Berezanskii: Expansions in Eigenfunctions of Selfadjoint Operators, Transl. Math. Monographs Vol. 17, American Mathematical Society, Providence, Rhode Island, 1968. 
  7. [7] D. Bollé: “Schrödinger operators at threshold”, In: S. Albeverio, J.E. Fenstad, H. Holden, T. Lindström (Eds.): Ideas and Methods in Quantum and Statistical Physics (Oslo, 1988), Cambridge University Press, Cambridge, 1992, pp. 173–196. Zbl0787.35056
  8. [8] D. Bollé, F. Gesztesy, C. Danneels: “Threshold scattering in two dimensions”, Ann. Inst. H. Poincaré Phys. Théor., Vol. 48, (1988), pp. 175–204. Zbl0696.35040
  9. [9] D. Bollé, F. Gesztesy, M. Klaus: “Scattering theory for one-dimensional systems with ∫dx V (x)=0”, J. Math. Anal. Appl., Vol.122, (1987) pp. 496–518. http://dx.doi.org/10.1016/0022-247X(87)90281-2 Zbl0617.35105
  10. [10] D. Bollé, F. Gesztesy, C. Nessmann, L. Streit: “Scattering theory for general, nonlocal interactions: threshold behavior and sum rules”, Rep. Math. Phys., Vol. 23, (1986), pp. 373–408. http://dx.doi.org/10.1016/0034-4877(86)90032-7 Zbl0641.35050
  11. [11] D. Bollé, F. Gesztesy, S.F.J. Wilk: “A complete treatment of low-energy scattering in one dimension”, J. Operator Theory, Vol. 13, (1985), pp. 3–31. Zbl0567.47008
  12. [12] M. Cheney: “Two-dimensional scattering: the number of bound states from scattering data”, J. Math. Phys., Vol. 25, (1984), pp. 1449–1455. http://dx.doi.org/10.1063/1.526314 Zbl0554.35094
  13. [13] H.L. Cycon, R.G. Froese, W. Kirch, B. Simon: Schrödinger Operators-With Applications to Quantum Mechanics and Global Geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, Heidelberg, New York, 1987. 
  14. [14] P.G. Dodds and D.H. Fremlin: “Compact operators in Banach lattices”, Israel J. Math., Vol. 34, (1979), pp. 287–320. Zbl0438.47042
  15. [15] P.D. Hislop and I.M. Sigal: Introduction to Spectral Theory. With applications to Schrödinger operators, Applied Mathematical Sciences 113, Springer-Verlag New York, Inc., 1996. 
  16. [16] A. Jensen and T. Kato: “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., Vol. 46, (1979), pp. 583–611. http://dx.doi.org/10.1215/S0012-7094-79-04631-3 Zbl0448.35080
  17. [17] A. Jensen and M. Melgaard: “Perturbation of eigenvalues embedded at a threshold”, Proc. Roy. Soc. Edinburgh Sect., Vol. 131 A, (2002), pp. 163–179. Zbl1094.81024
  18. [18] A. Jensen, E. Mourre, P. Perry: “Multiple commutator estimates and resolvent smoothness in quantum scattering theory”, Ann. Inst. Henri Poincaré, Vol. 41, (1984), pp. 207–225. Zbl0561.47007
  19. [19] A. Jensen: “Scattering theory for Stark Hamiltonians”, Proc. Indian Acad. Sci. (Math. Sci.), Vol. 104, (1994), pp. 599–651. Zbl0827.47006
  20. [20] T. Kato: Perturbation Theory for Linear Operators, Volume 132 of Die Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, Heidelberg, New York, second edition, 1976. Zbl0342.47009
  21. [21] M. Klaus and B. Simon: “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Commun. Math. Phys., Vol. 78, (1980), pp. 251–281. http://dx.doi.org/10.1007/BF01942369 Zbl0455.35112
  22. [22] V.V. Kostrykin, A.A. Kvitsinsky, S.P. Merkuriev: “Potential scattering in a constant magnetic field: spectral asymptotics and Levinson formula”, J. Phys. A: Math. Gen., Vol. 28, (1995), pp. 3493–3509. http://dx.doi.org/10.1088/0305-4470/28/12/021 Zbl0861.47052
  23. [23] S.T. Kuroda: An Introduction to Scattering Theory, Aarhus University, Matematisk Institut, Lecture Notes Series, 1978. Zbl0407.47003
  24. [24] I. Laba: “Long-range one-particle scattering in a homogeneous magnetic field”, Duke Math. J., Vol. 70, (1993), pp. 283–303. http://dx.doi.org/10.1215/S0012-7094-93-07005-6 Zbl0809.47007
  25. [25] M.R.C. McDowell and M. Zarcone: “Scattering in strong magnetic fields”, Adv.At. Mol. Phys., Vol. 21, (1986), pp. 255–304. http://dx.doi.org/10.1016/S0065-2199(08)60144-X 
  26. [26] M. Melgaard: “Spectral properties in the low-energy limit of one-dimensional Schrödinger operators. The case 〈1, V1〉≠0”, Math. Nachr., Vol. 238, (2002), pp. 113–143. http://dx.doi.org/10.1002/1522-2616(200205)238:1<113::AID-MANA113>3.0.CO;2-D 
  27. [27] M. Melgaard: “Spectral properties in the low-energy limit of one-dimensional Schrödinger operators. The case 〈1, V1〉=0”, in preparation. 
  28. [28] M. Melgaard: “Spectral properties at a threshold for two-channel Hamiltonians. I. Abstract theory”, J. Math. Anal. Appl., Vol. 256, (2001), pp. 281–303. http://dx.doi.org/10.1006/jmaa.2000.7325 
  29. [29] E. Mourre: “Absence of singular continuous spectrum for certain self-adjoint operators”, Commun. Math. Phys., Vol. 78, (1981), pp. 391–408. http://dx.doi.org/10.1007/BF01942331 Zbl0489.47010
  30. [30] R.G. Newton: “Noncentral potentials: the generalized Levinson theorem and the structure of the spectrum”, J. Math. Phys., Vol. 18, (1977), pp. 1348–1357. http://dx.doi.org/10.1063/1.523428 
  31. [31] R.G. Newton: “Nonlocal interactions; the generalized Levinson theorem and the structure of the spectrum”, J. Math. Phys., Vol. 18, (1977), pp. 1582–1588. http://dx.doi.org/10.1063/1.523466 
  32. [32] R.G. Newton: “Bounds on the number of bound states for the Schrödinger equation in one and two dimensions”, J. Operator Theory, 10, (1983), pp. 119–125. Zbl0527.35062
  33. [33] P. Perry, I.M. Sigal, B. Simon: “Spectral analysis of N-body Schrödinger operators”, Ann. Math., Vol. 114, (1981), pp. 516–567. http://dx.doi.org/10.2307/1971301 Zbl0477.35069
  34. [34] L. Pitt: “A compactness condition for linear operators in function spaces”, J. Operator Theory, Vol. 1, (1979) pp. 49–54. Zbl0441.47042
  35. [35] M. Reed and B. Simon: Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press Inc., 1975. Zbl0308.47002
  36. [36] M. Reed and B. Simon: Methods of modern mathematical physics. IV: Analysis of operators, Academic Press Inc., London, 1978. 
  37. [37] M. Schechter: Spectra of Partial Differential Operators, First edition, North-Holland, Amsterdam, New York, Oxford, 1971. 
  38. [38] S.N. Solnyshkin: “Asymptotics of the energy of bound states of the Schrödinger operator in the presence of electric and homogeneous magnetic fields”, Sel. Math. Sov., Vol. 5, (1986), pp. 297–306. Zbl0598.35017
  39. [39] H. Tamura, “Magnetic scattering at low energy in two dimensions”, Nagoya Math. J., Vol. 155, (1999), pp. 95–151. Zbl0934.35140

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.