Multiscale finite element coarse spaces for the application to linear elasticity

Marco Buck; Oleg Iliev; Heiko Andrä

Open Mathematics (2013)

  • Volume: 11, Issue: 4, page 680-701
  • ISSN: 2391-5455

Abstract

top
We extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction of robust coarse spaces in the context of two-level overlapping domain decomposition preconditioners. We motivate and explain the construction and show that the constructed multiscale coarse space contains all the rigid body modes. Under the assumption that the material jumps are isolated, that is they occur only in the interior of the coarse grid elements, our numerical experiments show uniform convergence rates independent of the contrast in Young’s modulus within the heterogeneous material. Elsewise, if no restrictions on the position of the high coefficient inclusions are imposed, robustness cannot be guaranteed any more. These results justify expectations to obtain coefficient-explicit condition number bounds for the PDE system of linear elasticity similar to existing ones for scalar elliptic PDEs as given in the work of Graham, Lechner and Scheichl [Graham I.G., Lechner P.O., Scheichl R., Domain decomposition for multiscale PDEs, Numer. Math., 2007, 106(4), 589–626]. Furthermore, we numerically observe the properties of the MsFEM coarse space for linear elasticity in an upscaling framework. Therefore, we present experimental results showing the approximation errors of the multiscale coarse space w.r.t. the fine-scale solution.

How to cite

top

Marco Buck, Oleg Iliev, and Heiko Andrä. "Multiscale finite element coarse spaces for the application to linear elasticity." Open Mathematics 11.4 (2013): 680-701. <http://eudml.org/doc/269162>.

@article{MarcoBuck2013,
abstract = {We extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction of robust coarse spaces in the context of two-level overlapping domain decomposition preconditioners. We motivate and explain the construction and show that the constructed multiscale coarse space contains all the rigid body modes. Under the assumption that the material jumps are isolated, that is they occur only in the interior of the coarse grid elements, our numerical experiments show uniform convergence rates independent of the contrast in Young’s modulus within the heterogeneous material. Elsewise, if no restrictions on the position of the high coefficient inclusions are imposed, robustness cannot be guaranteed any more. These results justify expectations to obtain coefficient-explicit condition number bounds for the PDE system of linear elasticity similar to existing ones for scalar elliptic PDEs as given in the work of Graham, Lechner and Scheichl [Graham I.G., Lechner P.O., Scheichl R., Domain decomposition for multiscale PDEs, Numer. Math., 2007, 106(4), 589–626]. Furthermore, we numerically observe the properties of the MsFEM coarse space for linear elasticity in an upscaling framework. Therefore, we present experimental results showing the approximation errors of the multiscale coarse space w.r.t. the fine-scale solution.},
author = {Marco Buck, Oleg Iliev, Heiko Andrä},
journal = {Open Mathematics},
keywords = {Linear elasticity; Robust coarse spaces; Rigid body modes; Multiscale finite elements; linear elasticity; robust coarse spaces; rigid body modes; multiscale finite elements},
language = {eng},
number = {4},
pages = {680-701},
title = {Multiscale finite element coarse spaces for the application to linear elasticity},
url = {http://eudml.org/doc/269162},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Marco Buck
AU - Oleg Iliev
AU - Heiko Andrä
TI - Multiscale finite element coarse spaces for the application to linear elasticity
JO - Open Mathematics
PY - 2013
VL - 11
IS - 4
SP - 680
EP - 701
AB - We extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction of robust coarse spaces in the context of two-level overlapping domain decomposition preconditioners. We motivate and explain the construction and show that the constructed multiscale coarse space contains all the rigid body modes. Under the assumption that the material jumps are isolated, that is they occur only in the interior of the coarse grid elements, our numerical experiments show uniform convergence rates independent of the contrast in Young’s modulus within the heterogeneous material. Elsewise, if no restrictions on the position of the high coefficient inclusions are imposed, robustness cannot be guaranteed any more. These results justify expectations to obtain coefficient-explicit condition number bounds for the PDE system of linear elasticity similar to existing ones for scalar elliptic PDEs as given in the work of Graham, Lechner and Scheichl [Graham I.G., Lechner P.O., Scheichl R., Domain decomposition for multiscale PDEs, Numer. Math., 2007, 106(4), 589–626]. Furthermore, we numerically observe the properties of the MsFEM coarse space for linear elasticity in an upscaling framework. Therefore, we present experimental results showing the approximation errors of the multiscale coarse space w.r.t. the fine-scale solution.
LA - eng
KW - Linear elasticity; Robust coarse spaces; Rigid body modes; Multiscale finite elements; linear elasticity; robust coarse spaces; rigid body modes; multiscale finite elements
UR - http://eudml.org/doc/269162
ER -

References

top
  1. [1] Baker A.H., Kolev Tz.V., Yang U.M., Improving algebraic multigrid interpolation operators for linear elasticity problems, Numer. Linear Algebra Appl., 2010, 17(2–3), 495–517 Zbl1240.74027
  2. [2] Braess D., Finite Elements, 3rd ed., Cambridge University Press, Cambridge, 2007 http://dx.doi.org/10.1017/CBO9780511618635 
  3. [3] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math., 15, Springer, New York, 1991 Zbl0788.73002
  4. [4] Chu C.-C., Graham I.G., Hou T.-Y., A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comp., 2010, 79(272), 1915–1955 http://dx.doi.org/10.1090/S0025-5718-2010-02372-5 
  5. [5] Clees T., AMG Strategies for PDE Systems with Applications in Industrial Semiconductor Simulation, PhD thesis, Universität zu Köln, 2005, available at http://www.scai.fraunhofer.de/fileadmin/download/samg/paper/Clees_Diss.pdf 
  6. [6] Clément Ph., Approximation by finite element functions using local regularization, RAIRO Anal. Numér., 1975, R-2, 77–84 
  7. [7] Durlofsky L.J., Efendiev Y., Ginting V., An adaptive local-global multiscale finite volume element method for twophase flow simulations, Adv. in Water Res., 2007, 30(3), 576–588 http://dx.doi.org/10.1016/j.advwatres.2006.04.002 
  8. [8] Efendiev Y., Hou T.Y., Multiscale Finite Element Methods, Surv. Tutor. Appl. Math. Sci., 4, Springer, New York, 2009 Zbl1163.65080
  9. [9] Efendiev Y., Galvis J., Lazarov R., Willems J., Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, ESAIM Math. Model. Numer. Anal., 2012, 46(5), 1175–1199 http://dx.doi.org/10.1051/m2an/2011073 Zbl1272.65098
  10. [10] Falk R.S., Nonconforming finite element methods for the equations of linear elasticity, Math. Comp., 1991, 57(196), 529–550 http://dx.doi.org/10.1090/S0025-5718-1991-1094947-6 Zbl0747.73044
  11. [11] Galvis J., Efendiev Y., Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model. Simul., 2010, 8(4), 1461–1483 http://dx.doi.org/10.1137/090751190 Zbl1206.76042
  12. [12] Galvis J., Efendiev Y., Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces, Multiscale Model. Simul., 2010, 8(5), 1621–1644 http://dx.doi.org/10.1137/100790112 Zbl05869382
  13. [13] Graham I.G., Lechner P.O., Scheichl R., Domain decomposition for multiscale PDEs, Numer. Math., 2007, 106(4), 589–626 http://dx.doi.org/10.1007/s00211-007-0074-1 Zbl1141.65084
  14. [14] Graham I.G., Scheichl R., Robust domain decomposition algorithms for multiscale PDEs, Numer. Methods Partial Differential Equations, 2007, 23(4), 859–878 http://dx.doi.org/10.1002/num.20254 Zbl1141.65085
  15. [15] Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189 http://dx.doi.org/10.1006/jcph.1997.5682 
  16. [16] Hou T.Y., Wu X.-H., A multiscale finite element method for PDEs with oscillatory coefficients, In: Numerical Treatment of Multi-Scale Problems, Kiel, January 24–26, 1997, Notes Numer. Fluid Mech., 70, Friedrich Vieweg & Sohn, Braunschweig, 1999, 58–69 
  17. [17] Hou T.Y., Wu X.-H., Cai Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 1999, 68(227), 913–943 http://dx.doi.org/10.1090/S0025-5718-99-01077-7 Zbl0922.65071
  18. [18] Hughes T.J.R., The Finite Element Method, Prentice Hall, Englewood Cliffs, 1987 Zbl0634.73056
  19. [19] Iliev O., Lazarov R., Willems J., Variational multiscale finite element method for flows in highly porous media, Multiscale Model. Simul., 2011, 9(4), 1350–1372 http://dx.doi.org/10.1137/10079940X Zbl1244.76024
  20. [20] Janka A., Algebraic domain decomposition solver for linear elasticity, In: Programs and Algorithms of Numerical Mathematics, Kořenov, June 8–12, 1998, Appl. Math., 1999, 44(6), 435–458 Zbl1060.74628
  21. [21] Karer E., Subspace Correction Methods for Linear Elasticity, PhD thesis, Universität Linz, 2011 
  22. [22] Karer E., Kraus J.K., Algebraic multigrid for finite element elasticity equations: determination of nodal dependence via edge-matrices and two-level convergence, Internat. J. Numer. Methods Engrg., 2010, 83(5), 642–670 Zbl1197.74181
  23. [23] Kolev T., Margenov S., AMLI preconditioning of pure displacement non-conforming elasticity FEM systems, In: Numerical Analysis and its Applications, Rousse, 2000, Lecture Notes in Comput. Sci., 1988, Springer, Berlin, 2001, 482–489 http://dx.doi.org/10.1007/3-540-45262-1_56 Zbl1011.74072
  24. [24] Kraus J.K., Algebraic multigrid based on computational molecules, 2: Linear elasticity problems, SIAM J. Sci. Comput., 2008, 30(1), 505–524 http://dx.doi.org/10.1137/050641156 Zbl1253.65043
  25. [25] Kraus J., Margenov S., Robust Algebraic Multilevel Methods and Algorithms, Radon Ser. Comput. Appl. Math., 5, De Gruyter, Berlin, 2009 http://dx.doi.org/10.1515/9783110214833 Zbl1184.65113
  26. [26] Kraus J.K., Schicho J., Algebraic multigrid based on computational molecules, 1: scalar elliptic problems, Computing, 2006, 77(1), 57–75 http://dx.doi.org/10.1007/s00607-005-0147-x Zbl1088.65109
  27. [27] Mandel J., Brezina M., Vaněk P., Energy optimization of algebraic multigrid bases, Computing, 1999, 62(3), 205–228 http://dx.doi.org/10.1007/s006070050022 Zbl0942.65034
  28. [28] Millward R., A New Adaptive Multiscale Finite Element Method with Applications to High Contrast Interface Problems, PhD thesis, University of Bath, 2011, available at http://opus.bath.ac.uk/27851/ 
  29. [29] Saad Y., Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003 http://dx.doi.org/10.1137/1.9780898718003 
  30. [30] Sarkis M., Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity, In: Domain Decomposition Methods in Science and Engineering, Cocoyoc, January 6–12, 2002, UNAM, México D.F., 2003, 149–158, available at http://www.ddm.org/DD14/dd14_proceedings.pdf 
  31. [31] Schulz V., Andrä H., Schmidt K., Robuste Netzgenerierung zur µFE-Analyse mikrostrukturierter Materialien, NAFEMS Magazin, 2007, 7(2), 28–30 
  32. [32] Smith B.F., Domain Decomposition Algorithms for the Partial Differential Equations of Linear Elasticity, PhD thesis, New York University, 1990 
  33. [33] Spillane N., Dolean V., Hauret P., Nataf F., Pechstein C., Scheichl R., Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Universität Linz, 2011, NuMa-Report #2011-07, available at http://www.numa.uni-linz.ac.at/Publications/List/2011/2011-07.pdf Zbl1291.65109
  34. [34] Toselli A., Widlund O., Domain Decomposition Methods, Algorithms and Theory, Springer Ser. Comput. Math., 34, Springer, Berlin, 2005 Zbl1069.65138
  35. [35] Vanlent J., Scheichl R., Graham I.G., Energy-minimizing coarse spaces for two-level Schwarz methods for multiscale PDEs, Numer. Linear Algebra Appl., 2009, 16(10), 775–799 http://dx.doi.org/10.1002/nla.641 Zbl1224.65292
  36. [36] Vaněk P., Acceleration of convergence of a two-level algorithm by smoothing transfer operator, Appl. Math., 1992, 37(4), 265–274 Zbl0773.65021
  37. [37] Vaněk P., Fast multigrid solver, Appl. Math., 1995, 40(1), 1–20 Zbl0824.65016
  38. [38] Vaněk P., Brezina M., Tezaur R., Two-grid method for linear elasticity on unstructured meshes, SIAM J. Sci. Comput., 1999, 21(3), 900–923 http://dx.doi.org/10.1137/S1064827596297112 Zbl0952.65099
  39. [39] Vassilevski P.S., Multilevel Block Factorization Preconditioners, Springer, New York, 2008 
  40. [40] Wan W.L., Chan T.F., Smith B., An energy-minimizing interpolation for robust multigrid methods, SIAM J. Sci. Comput., 2000, 21(4), 1632–1649 http://dx.doi.org/10.1137/S1064827598334277 Zbl0966.65098
  41. [41] Willems J., Robust multilevel methods for general symmetric positive definite operators, RICAM Institute for Computational and Applied Mathematics, 2012, report #2012-06, available at http://www.ricam.oeaw.ac.at/publications/reports/12/rep12-06.pdf 
  42. [42] Xu J., Zikatanov L., On an energy minimizing basis for algebraic multigrid methods, Comput. Vis. Sci., 2004, 7(3–4), 121–127 Zbl1077.65130
  43. [43] Zhu Y., Sifakis E., Teran J., Brandt A., An efficient multigrid method for the simulation of high resolution elastic solids, ACM Transactions on Graphics, 2010, 29(2), #16 http://dx.doi.org/10.1145/1731047.1731054 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.