Multiscale finite element coarse spaces for the application to linear elasticity
Marco Buck; Oleg Iliev; Heiko Andrä
Open Mathematics (2013)
- Volume: 11, Issue: 4, page 680-701
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMarco Buck, Oleg Iliev, and Heiko Andrä. "Multiscale finite element coarse spaces for the application to linear elasticity." Open Mathematics 11.4 (2013): 680-701. <http://eudml.org/doc/269162>.
@article{MarcoBuck2013,
abstract = {We extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction of robust coarse spaces in the context of two-level overlapping domain decomposition preconditioners. We motivate and explain the construction and show that the constructed multiscale coarse space contains all the rigid body modes. Under the assumption that the material jumps are isolated, that is they occur only in the interior of the coarse grid elements, our numerical experiments show uniform convergence rates independent of the contrast in Young’s modulus within the heterogeneous material. Elsewise, if no restrictions on the position of the high coefficient inclusions are imposed, robustness cannot be guaranteed any more. These results justify expectations to obtain coefficient-explicit condition number bounds for the PDE system of linear elasticity similar to existing ones for scalar elliptic PDEs as given in the work of Graham, Lechner and Scheichl [Graham I.G., Lechner P.O., Scheichl R., Domain decomposition for multiscale PDEs, Numer. Math., 2007, 106(4), 589–626]. Furthermore, we numerically observe the properties of the MsFEM coarse space for linear elasticity in an upscaling framework. Therefore, we present experimental results showing the approximation errors of the multiscale coarse space w.r.t. the fine-scale solution.},
author = {Marco Buck, Oleg Iliev, Heiko Andrä},
journal = {Open Mathematics},
keywords = {Linear elasticity; Robust coarse spaces; Rigid body modes; Multiscale finite elements; linear elasticity; robust coarse spaces; rigid body modes; multiscale finite elements},
language = {eng},
number = {4},
pages = {680-701},
title = {Multiscale finite element coarse spaces for the application to linear elasticity},
url = {http://eudml.org/doc/269162},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Marco Buck
AU - Oleg Iliev
AU - Heiko Andrä
TI - Multiscale finite element coarse spaces for the application to linear elasticity
JO - Open Mathematics
PY - 2013
VL - 11
IS - 4
SP - 680
EP - 701
AB - We extend the multiscale finite element method (MsFEM) as formulated by Hou and Wu in [Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189] to the PDE system of linear elasticity. The application, motivated by the multiscale analysis of highly heterogeneous composite materials, is twofold. Resolving the heterogeneities on the finest scale, we utilize the linear MsFEM basis for the construction of robust coarse spaces in the context of two-level overlapping domain decomposition preconditioners. We motivate and explain the construction and show that the constructed multiscale coarse space contains all the rigid body modes. Under the assumption that the material jumps are isolated, that is they occur only in the interior of the coarse grid elements, our numerical experiments show uniform convergence rates independent of the contrast in Young’s modulus within the heterogeneous material. Elsewise, if no restrictions on the position of the high coefficient inclusions are imposed, robustness cannot be guaranteed any more. These results justify expectations to obtain coefficient-explicit condition number bounds for the PDE system of linear elasticity similar to existing ones for scalar elliptic PDEs as given in the work of Graham, Lechner and Scheichl [Graham I.G., Lechner P.O., Scheichl R., Domain decomposition for multiscale PDEs, Numer. Math., 2007, 106(4), 589–626]. Furthermore, we numerically observe the properties of the MsFEM coarse space for linear elasticity in an upscaling framework. Therefore, we present experimental results showing the approximation errors of the multiscale coarse space w.r.t. the fine-scale solution.
LA - eng
KW - Linear elasticity; Robust coarse spaces; Rigid body modes; Multiscale finite elements; linear elasticity; robust coarse spaces; rigid body modes; multiscale finite elements
UR - http://eudml.org/doc/269162
ER -
References
top- [1] Baker A.H., Kolev Tz.V., Yang U.M., Improving algebraic multigrid interpolation operators for linear elasticity problems, Numer. Linear Algebra Appl., 2010, 17(2–3), 495–517 Zbl1240.74027
- [2] Braess D., Finite Elements, 3rd ed., Cambridge University Press, Cambridge, 2007 http://dx.doi.org/10.1017/CBO9780511618635
- [3] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math., 15, Springer, New York, 1991 Zbl0788.73002
- [4] Chu C.-C., Graham I.G., Hou T.-Y., A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comp., 2010, 79(272), 1915–1955 http://dx.doi.org/10.1090/S0025-5718-2010-02372-5
- [5] Clees T., AMG Strategies for PDE Systems with Applications in Industrial Semiconductor Simulation, PhD thesis, Universität zu Köln, 2005, available at http://www.scai.fraunhofer.de/fileadmin/download/samg/paper/Clees_Diss.pdf
- [6] Clément Ph., Approximation by finite element functions using local regularization, RAIRO Anal. Numér., 1975, R-2, 77–84
- [7] Durlofsky L.J., Efendiev Y., Ginting V., An adaptive local-global multiscale finite volume element method for twophase flow simulations, Adv. in Water Res., 2007, 30(3), 576–588 http://dx.doi.org/10.1016/j.advwatres.2006.04.002
- [8] Efendiev Y., Hou T.Y., Multiscale Finite Element Methods, Surv. Tutor. Appl. Math. Sci., 4, Springer, New York, 2009 Zbl1163.65080
- [9] Efendiev Y., Galvis J., Lazarov R., Willems J., Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms, ESAIM Math. Model. Numer. Anal., 2012, 46(5), 1175–1199 http://dx.doi.org/10.1051/m2an/2011073 Zbl1272.65098
- [10] Falk R.S., Nonconforming finite element methods for the equations of linear elasticity, Math. Comp., 1991, 57(196), 529–550 http://dx.doi.org/10.1090/S0025-5718-1991-1094947-6 Zbl0747.73044
- [11] Galvis J., Efendiev Y., Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model. Simul., 2010, 8(4), 1461–1483 http://dx.doi.org/10.1137/090751190 Zbl1206.76042
- [12] Galvis J., Efendiev Y., Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces, Multiscale Model. Simul., 2010, 8(5), 1621–1644 http://dx.doi.org/10.1137/100790112 Zbl05869382
- [13] Graham I.G., Lechner P.O., Scheichl R., Domain decomposition for multiscale PDEs, Numer. Math., 2007, 106(4), 589–626 http://dx.doi.org/10.1007/s00211-007-0074-1 Zbl1141.65084
- [14] Graham I.G., Scheichl R., Robust domain decomposition algorithms for multiscale PDEs, Numer. Methods Partial Differential Equations, 2007, 23(4), 859–878 http://dx.doi.org/10.1002/num.20254 Zbl1141.65085
- [15] Hou T.Y., Wu X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 1997, 134(1), 169–189 http://dx.doi.org/10.1006/jcph.1997.5682
- [16] Hou T.Y., Wu X.-H., A multiscale finite element method for PDEs with oscillatory coefficients, In: Numerical Treatment of Multi-Scale Problems, Kiel, January 24–26, 1997, Notes Numer. Fluid Mech., 70, Friedrich Vieweg & Sohn, Braunschweig, 1999, 58–69
- [17] Hou T.Y., Wu X.-H., Cai Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 1999, 68(227), 913–943 http://dx.doi.org/10.1090/S0025-5718-99-01077-7 Zbl0922.65071
- [18] Hughes T.J.R., The Finite Element Method, Prentice Hall, Englewood Cliffs, 1987 Zbl0634.73056
- [19] Iliev O., Lazarov R., Willems J., Variational multiscale finite element method for flows in highly porous media, Multiscale Model. Simul., 2011, 9(4), 1350–1372 http://dx.doi.org/10.1137/10079940X Zbl1244.76024
- [20] Janka A., Algebraic domain decomposition solver for linear elasticity, In: Programs and Algorithms of Numerical Mathematics, Kořenov, June 8–12, 1998, Appl. Math., 1999, 44(6), 435–458 Zbl1060.74628
- [21] Karer E., Subspace Correction Methods for Linear Elasticity, PhD thesis, Universität Linz, 2011
- [22] Karer E., Kraus J.K., Algebraic multigrid for finite element elasticity equations: determination of nodal dependence via edge-matrices and two-level convergence, Internat. J. Numer. Methods Engrg., 2010, 83(5), 642–670 Zbl1197.74181
- [23] Kolev T., Margenov S., AMLI preconditioning of pure displacement non-conforming elasticity FEM systems, In: Numerical Analysis and its Applications, Rousse, 2000, Lecture Notes in Comput. Sci., 1988, Springer, Berlin, 2001, 482–489 http://dx.doi.org/10.1007/3-540-45262-1_56 Zbl1011.74072
- [24] Kraus J.K., Algebraic multigrid based on computational molecules, 2: Linear elasticity problems, SIAM J. Sci. Comput., 2008, 30(1), 505–524 http://dx.doi.org/10.1137/050641156 Zbl1253.65043
- [25] Kraus J., Margenov S., Robust Algebraic Multilevel Methods and Algorithms, Radon Ser. Comput. Appl. Math., 5, De Gruyter, Berlin, 2009 http://dx.doi.org/10.1515/9783110214833 Zbl1184.65113
- [26] Kraus J.K., Schicho J., Algebraic multigrid based on computational molecules, 1: scalar elliptic problems, Computing, 2006, 77(1), 57–75 http://dx.doi.org/10.1007/s00607-005-0147-x Zbl1088.65109
- [27] Mandel J., Brezina M., Vaněk P., Energy optimization of algebraic multigrid bases, Computing, 1999, 62(3), 205–228 http://dx.doi.org/10.1007/s006070050022 Zbl0942.65034
- [28] Millward R., A New Adaptive Multiscale Finite Element Method with Applications to High Contrast Interface Problems, PhD thesis, University of Bath, 2011, available at http://opus.bath.ac.uk/27851/
- [29] Saad Y., Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, 2003 http://dx.doi.org/10.1137/1.9780898718003
- [30] Sarkis M., Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity, In: Domain Decomposition Methods in Science and Engineering, Cocoyoc, January 6–12, 2002, UNAM, México D.F., 2003, 149–158, available at http://www.ddm.org/DD14/dd14_proceedings.pdf
- [31] Schulz V., Andrä H., Schmidt K., Robuste Netzgenerierung zur µFE-Analyse mikrostrukturierter Materialien, NAFEMS Magazin, 2007, 7(2), 28–30
- [32] Smith B.F., Domain Decomposition Algorithms for the Partial Differential Equations of Linear Elasticity, PhD thesis, New York University, 1990
- [33] Spillane N., Dolean V., Hauret P., Nataf F., Pechstein C., Scheichl R., Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Universität Linz, 2011, NuMa-Report #2011-07, available at http://www.numa.uni-linz.ac.at/Publications/List/2011/2011-07.pdf Zbl1291.65109
- [34] Toselli A., Widlund O., Domain Decomposition Methods, Algorithms and Theory, Springer Ser. Comput. Math., 34, Springer, Berlin, 2005 Zbl1069.65138
- [35] Vanlent J., Scheichl R., Graham I.G., Energy-minimizing coarse spaces for two-level Schwarz methods for multiscale PDEs, Numer. Linear Algebra Appl., 2009, 16(10), 775–799 http://dx.doi.org/10.1002/nla.641 Zbl1224.65292
- [36] Vaněk P., Acceleration of convergence of a two-level algorithm by smoothing transfer operator, Appl. Math., 1992, 37(4), 265–274 Zbl0773.65021
- [37] Vaněk P., Fast multigrid solver, Appl. Math., 1995, 40(1), 1–20 Zbl0824.65016
- [38] Vaněk P., Brezina M., Tezaur R., Two-grid method for linear elasticity on unstructured meshes, SIAM J. Sci. Comput., 1999, 21(3), 900–923 http://dx.doi.org/10.1137/S1064827596297112 Zbl0952.65099
- [39] Vassilevski P.S., Multilevel Block Factorization Preconditioners, Springer, New York, 2008
- [40] Wan W.L., Chan T.F., Smith B., An energy-minimizing interpolation for robust multigrid methods, SIAM J. Sci. Comput., 2000, 21(4), 1632–1649 http://dx.doi.org/10.1137/S1064827598334277 Zbl0966.65098
- [41] Willems J., Robust multilevel methods for general symmetric positive definite operators, RICAM Institute for Computational and Applied Mathematics, 2012, report #2012-06, available at http://www.ricam.oeaw.ac.at/publications/reports/12/rep12-06.pdf
- [42] Xu J., Zikatanov L., On an energy minimizing basis for algebraic multigrid methods, Comput. Vis. Sci., 2004, 7(3–4), 121–127 Zbl1077.65130
- [43] Zhu Y., Sifakis E., Teran J., Brandt A., An efficient multigrid method for the simulation of high resolution elastic solids, ACM Transactions on Graphics, 2010, 29(2), #16 http://dx.doi.org/10.1145/1731047.1731054
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.