Subsheaves of the cotangent bundle

Paolo Cascini

Open Mathematics (2006)

  • Volume: 4, Issue: 2, page 209-224
  • ISSN: 2391-5455

Abstract

top
For any smooth projective variety, we study a birational invariant, defined by Campana which depends on the Kodaira dimension of the subsheaves of the cotangent bundle of the variety and its exterior powers. We provide new bounds for a related invariant in any dimension and in particular we show that it is equal to the Kodaira dimension of the variety, in dimension up to 4, if this is not negative.

How to cite

top

Paolo Cascini. "Subsheaves of the cotangent bundle." Open Mathematics 4.2 (2006): 209-224. <http://eudml.org/doc/269475>.

@article{PaoloCascini2006,
abstract = {For any smooth projective variety, we study a birational invariant, defined by Campana which depends on the Kodaira dimension of the subsheaves of the cotangent bundle of the variety and its exterior powers. We provide new bounds for a related invariant in any dimension and in particular we show that it is equal to the Kodaira dimension of the variety, in dimension up to 4, if this is not negative.},
author = {Paolo Cascini},
journal = {Open Mathematics},
keywords = {14E05 14J35},
language = {eng},
number = {2},
pages = {209-224},
title = {Subsheaves of the cotangent bundle},
url = {http://eudml.org/doc/269475},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Paolo Cascini
TI - Subsheaves of the cotangent bundle
JO - Open Mathematics
PY - 2006
VL - 4
IS - 2
SP - 209
EP - 224
AB - For any smooth projective variety, we study a birational invariant, defined by Campana which depends on the Kodaira dimension of the subsheaves of the cotangent bundle of the variety and its exterior powers. We provide new bounds for a related invariant in any dimension and in particular we show that it is equal to the Kodaira dimension of the variety, in dimension up to 4, if this is not negative.
LA - eng
KW - 14E05 14J35
UR - http://eudml.org/doc/269475
ER -

References

top
  1. [1] F. Bogomolov: “Holomorphic Tensors and Vector Bundles on Projective Varieties”, Math. USSR Izv., Vol. 13, (1979), pp. 499–555. http://dx.doi.org/10.1070/IM1979v013n03ABEH002076 Zbl0439.14002
  2. [2] S. Boucksom, J.P. Demailly, M. Paun and T. Peternell: “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension”, math.AG/0405285. Zbl1267.32017
  3. [3] F. Campana: “Réducation d’Albanèse d’un morphisme propre et faiblement kählérien. II. Groupes d’automorphismes relatifs”, Compositio Math., Vol. 54(3), (1985), pp. 399–416. Zbl0609.32008
  4. [4] F. Campana: “Connexité rationelle des variétés de Fano”, Ann. Sci. E.N.S., Vol. 25, (1992), pp. 539–545. 
  5. [5] F. Campana: “Fundamental Group and Positivity of Cotangent Bundles of Compact Kähler Manifolds”, J. Algebraic Geom., Vol. 4, (1995), pp. 487–502. Zbl0845.32027
  6. [6] F. Campana: “Orbifolds, Special Varieties and Classification Theory”, Ann. Inst. Fourier, Grenoble, Vol. 54(3), (2004), pp. 499–630. Zbl1062.14014
  7. [7] F. Campana and T. Peternell: “Geometric Stability of the Cotangent Bundle and the Universal Cover of a Projective Manifold”, math.AG/0405093. Zbl1218.14030
  8. [8] J.P. Demailly, T. Peternell and M. Schneider: “Pseudo-effective Line Bundles on compact Kähler Manifolds”, Intern. J. Math., Vol. 12(6), (2001), pp. 689–741. Zbl1111.32302
  9. [9] T. Ekedahl: T. Ekedahl: “Foliations and inseparable morphisms” (english), In: Algebraic geometry, Proc. Summer Res. Inst., (Brunswick/Maine 1985), Proc. Symp. Pure Math., Vol. 46(2), Amer. Math. Soc., Providence, RI, 1987, pp. 139–149. 
  10. [10] T. Graber, J. Harris and J. Starr: “Families of rationally connected varieties”, J. Amer. Math. Soc., Vol. 16, (2003), pp. 57–67. http://dx.doi.org/10.1090/S0894-0347-02-00402-2 Zbl1092.14063
  11. [11] P. Griffiths: “Periods of Integrals on Algebraic Manifolds III”, Publ. Math. I.H.E.S., Vol. 38, (1970), pp. 125–180. Zbl0212.53503
  12. [12] S. Iitaka: Algebraic Geometry, Graduate Texts in Math., Vol. 76, Springer, 1982. Zbl0491.14006
  13. [13] Y. Kawamata: “Characterization of Abelian Varieties”, Comp. Math., Vol. 43, (1981), pp. 253–276. Zbl0471.14022
  14. [14] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat: Toroidal Embeddings I, Lectures Notes in Math., Vol. 339, Springer Verlag, 1973. Zbl0271.14017
  15. [15] J. Kollár: “Higher Direct Images of Dualizing Sheaves II”, Ann. Math., Vol. 124, (1986), pp. 171–202. Zbl0605.14014
  16. [16] J. Kollár: “Nonrational Hypersurfaces”, J. Am. Math. Soc., Vol. 8(1), (1995), pp. 241–249. Zbl0839.14031
  17. [17] J. Kollár: Shafarevich maps and automorphic forms, Princeton University Press, 1995. Zbl0871.14015
  18. [18] K. Matsuki, Introduction to the Mori program, Springer-Verlag, New York, 2002. Zbl0988.14007
  19. [19] Y. Miyaoka: “The Chern classes and Kodaira dimension of a minimal variety”, In: Proc. Sympos. Alg. Geom., Sendai 1985, Adv. Stud. Pure Math, Vol. 10, Kynokuniya, Tokyo, 1985, pp. 449–476. 
  20. [20] S. Mori: “Classification of higher-dimensional varieties”, In: Algebraic geometry, Bowdoin 1985 (Brunswick/Maine 1985), Proc. Symp. Pure Math., Vol. 46(1), Amer. Math. Soc., Providence, RI, 1987, pp. 269–331. 
  21. [21] Y. Namikawa: “On deformations of Calabi-Yau 3-folds with terminal singularities”, Topology, Vol. 33(3), (1994), pp. 429–446. http://dx.doi.org/10.1016/0040-9383(94)90021-3 
  22. [22] J.H.M. Steenbrink: Mixed Hodge Structure on the Vanishing Cohomology, Real and Complex Singularities, Nordic Summer School, Oslo, 1976, pp. 525–563. 
  23. [23] K. Ueno: Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lectures Notes in Math., Vol. 439, Springer Verlag, 1975. Zbl0299.14007
  24. [24] E. Viehweg: “Die Additivität der Kodaira Dimension für projektive Faserräume über Varietäten des allgemeinen Typs”, J. Reine Angew. Math., Vol. 330, (1982), pp. 132–142. Zbl0466.14009
  25. [25] E. Viehweg and K. Zuo: “On the isotriviality of families of projective manifolds over curves Complex Spaces”, J. Alg. Geom., Vol. 10, (2001), pp. 781–799. Zbl1079.14503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.