Birational positivity in dimension 4

Behrouz Taji[1]

  • [1] McGill University The Department of Mathematics Burnside Hall, Room 1031 805 Sherbrooke W. Montreal, QC, H3A 0B9 (Canada)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 1, page 203-216
  • ISSN: 0373-0956

Abstract

top
In this paper we prove that for a nonsingular projective variety of dimension at most 4 and with non-negative Kodaira dimension, the Kodaira dimension of coherent subsheaves of Ω p is bounded from above by the Kodaira dimension of the variety. This implies the finiteness of the fundamental group for such an X provided that X has vanishing Kodaira dimension and non-trivial holomorphic Euler characteristic.

How to cite

top

Taji, Behrouz. "Birational positivity in dimension $4$." Annales de l’institut Fourier 64.1 (2014): 203-216. <http://eudml.org/doc/275526>.

@article{Taji2014,
abstract = {In this paper we prove that for a nonsingular projective variety of dimension at most 4 and with non-negative Kodaira dimension, the Kodaira dimension of coherent subsheaves of $\Omega ^p$ is bounded from above by the Kodaira dimension of the variety. This implies the finiteness of the fundamental group for such an $X$ provided that $X$ has vanishing Kodaira dimension and non-trivial holomorphic Euler characteristic.},
affiliation = {McGill University The Department of Mathematics Burnside Hall, Room 1031 805 Sherbrooke W. Montreal, QC, H3A 0B9 (Canada); Université Henri Poincaré Nancy 1 Institut Élie Cartan de Nancy, UMR 7502 B.P. 70239 54506 Vandoeuvre-lès-Nancy Cedex (France)},
author = {Taji, Behrouz},
journal = {Annales de l’institut Fourier},
keywords = {Kodaira dimension; varieties of Kodaira dimension zero; minimal model theory},
language = {eng},
number = {1},
pages = {203-216},
publisher = {Association des Annales de l’institut Fourier},
title = {Birational positivity in dimension $4$},
url = {http://eudml.org/doc/275526},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Taji, Behrouz
TI - Birational positivity in dimension $4$
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 1
SP - 203
EP - 216
AB - In this paper we prove that for a nonsingular projective variety of dimension at most 4 and with non-negative Kodaira dimension, the Kodaira dimension of coherent subsheaves of $\Omega ^p$ is bounded from above by the Kodaira dimension of the variety. This implies the finiteness of the fundamental group for such an $X$ provided that $X$ has vanishing Kodaira dimension and non-trivial holomorphic Euler characteristic.
LA - eng
KW - Kodaira dimension; varieties of Kodaira dimension zero; minimal model theory
UR - http://eudml.org/doc/275526
ER -

References

top
  1. Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), 201-248 Zbl1267.32017MR3019449
  2. Frédéric Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4) 25 (1992), 539-545 Zbl0783.14022MR1191735
  3. Frédéric Campana, Fundamental group and positivity of cotangent bundles of compact Kähler manifolds, J. Algebraic Geom. 4 (1995), 487-502 Zbl0845.32027MR1325789
  4. Frédéric Campana, Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble) 54 (2004), 499-630 Zbl1062.14014MR2097416
  5. Frédéric Campana, Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu 10 (2011), 809-934 Zbl1236.14039MR2831280
  6. Frédéric Campana, Thomas Peternell, Geometric stability of the cotangent bundle and the universal cover of a projective manifold, Bull. Soc. Math. France 139 (2011), 41-74 Zbl1218.14030MR2815027
  7. Paolo Cascini, Subsheaves of the cotangent bundle, Cent. Eur. J. Math. 4 (2006), 209-224 (electronic) Zbl1108.14009MR2221105
  8. Tom Graber, Joe Harris, Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), 57-67 (electronic) Zbl1092.14063MR1937199
  9. János Kollár, Flips and Abundance for Algebraic Threefolds, 211 (1992), Société Mathématique de France Zbl0782.00075MR1225842
  10. János Kollár, Yoichi Miyaoka, Shigefumi Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), 429-448 Zbl0780.14026MR1158625
  11. János Kollár, Shigefumi Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003
  12. Yoichi Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985 10 (1987), 449-476, North-Holland, Amsterdam Zbl0648.14006MR946247
  13. Yoichi Miyaoka, Deformations of a morphism along a foliation and applications, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) 46 (1987), 245-268, Amer. Math. Soc., Providence, RI Zbl0659.14008MR927960
  14. M. Raynaud, Flat modules in algebraic geometry, Compositio Math. 24 (1972), 11-31 Zbl0244.14001MR302645
  15. Shing Tung Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 1798-1799 Zbl0355.32028MR451180

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.