Finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures

Jie Wu; Yong-zheng Sun; Dong-hua Zhao

Kybernetika (2015)

  • Volume: 51, Issue: 4, page 655-666
  • ISSN: 0023-5954

Abstract

top
In this paper, we investigate the finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures. We propose new adaptive controllers, with which we can synchronize two complex dynamical networks within finite time. Sufficient conditions for the finite-time adaptive outer synchronization are derived based on the finite-time stability theory. Finally, numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results.

How to cite

top

Wu, Jie, Sun, Yong-zheng, and Zhao, Dong-hua. "Finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures." Kybernetika 51.4 (2015): 655-666. <http://eudml.org/doc/271812>.

@article{Wu2015,
abstract = {In this paper, we investigate the finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures. We propose new adaptive controllers, with which we can synchronize two complex dynamical networks within finite time. Sufficient conditions for the finite-time adaptive outer synchronization are derived based on the finite-time stability theory. Finally, numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results.},
author = {Wu, Jie, Sun, Yong-zheng, Zhao, Dong-hua},
journal = {Kybernetika},
keywords = {complex networks; outer synchronization; finite-time; adaptive feedback controllers; complex networks; outer synchronization; finite-time; adaptive feedback controllers},
language = {eng},
number = {4},
pages = {655-666},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures},
url = {http://eudml.org/doc/271812},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Wu, Jie
AU - Sun, Yong-zheng
AU - Zhao, Dong-hua
TI - Finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 4
SP - 655
EP - 666
AB - In this paper, we investigate the finite-time adaptive outer synchronization between two complex dynamical networks with nonidentical topological structures. We propose new adaptive controllers, with which we can synchronize two complex dynamical networks within finite time. Sufficient conditions for the finite-time adaptive outer synchronization are derived based on the finite-time stability theory. Finally, numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results.
LA - eng
KW - complex networks; outer synchronization; finite-time; adaptive feedback controllers; complex networks; outer synchronization; finite-time; adaptive feedback controllers
UR - http://eudml.org/doc/271812
ER -

References

top
  1. An, X. L., Zhang, L., Li, Y. Z., Zhang, J. G., 10.1016/j.physa.2014.06.033, Physica A: Statist. Mech. Appl. 412 (2014), 149-156. MR3237793DOI10.1016/j.physa.2014.06.033
  2. Aghababa, M. P., Aghababa, H. P., 10.1007/s11071-012-0395-1, Nonlinear Dyn. 69 (2012), 1903-1914. Zbl1263.93111MR2945528DOI10.1007/s11071-012-0395-1
  3. Aghababa, M. P., Aghababa, H. P., 10.1115/1.4023007, J. Comput. Nonlin. Dyn. 8 (2013), 031006. DOI10.1115/1.4023007
  4. Chen, D. Y., Zhang, R. F., Liu, X. Z., Ma, X. Y., 10.1016/j.cnsns.2014.05.005, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 4105-4121. MR3215040DOI10.1016/j.cnsns.2014.05.005
  5. Dimassi, H., Loría, A., Belghith, S., 10.1016/j.cnsns.2012.01.024, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3727-3739. Zbl1258.94010DOI10.1016/j.cnsns.2012.01.024
  6. Genesio, R., Tesi, A., 10.1016/0005-1098(92)90177-h, Automatica 28 (1992), 531-548. Zbl0765.93030DOI10.1016/0005-1098(92)90177-h
  7. Guirey, E., Bees, M. A., Martin, A., Srokosz, M., 10.1103/physreve.81.051902, Phys. Rev. E 81 (2010), 1511-1521. MR2736247DOI10.1103/physreve.81.051902
  8. He, P., Ma, S. H., Fan, T., 10.1063/1.4773005, Chaos 22 (2012), 043151. MR3388713DOI10.1063/1.4773005
  9. Huberman, B. A., Adamic, L. A., 10.1038/43604, Nature 401 (1999), 6749, 131. DOI10.1038/43604
  10. Lasalle, J. P., 10.1073/pnas.46.3.363, Proc. Natl. Acad. Sci. USA 46 (1960), 363-365. MR0113014DOI10.1073/pnas.46.3.363
  11. Lasalle, J. P., 10.1109/tct.1960.1086720, IRE Trans. Circuit Theory 7 (1960), 520-527. MR0118902DOI10.1109/tct.1960.1086720
  12. Li, C. G., Chen, G. R., 10.1016/j.physa.2004.05.058, Phys. A: Statist. Mech. Appl. 343 (2004), 263-278. DOI10.1016/j.physa.2004.05.058
  13. Li, C. P., Sun, W. G., Kurths, J., 10.1103/physreve.76.046204, Phys. Rev. E 76 (2007), 046204. DOI10.1103/physreve.76.046204
  14. Liao, T. L., Huang, N. S., 10.1109/81.788817, IEEE Trans. Circuits Syst. I 46 (1999), 1144-1150. Zbl0963.94003DOI10.1109/81.788817
  15. Lü, J. H., Chen, G. R., 10.1109/tac.2005.849233, IEEE Trans. Automat. Control 50 (2005), 841-846. MR2142000DOI10.1109/tac.2005.849233
  16. Mei, J., Jiang, M. H., Xu, W. M., Wang, B., 10.1016/j.cnsns.2012.11.009, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 2462-2478. Zbl1311.34157MR3042052DOI10.1016/j.cnsns.2012.11.009
  17. Revayova, M., Torok, C., Piecewise approximation and neural networks., Kybernetika 43 (2007), 547-559. Zbl1145.68495MR2377932
  18. Strogatz, S. H., Stewart, I., 10.1038/scientificamerican1293-102, Sci. Am. 269 (1993), 102-109. DOI10.1038/scientificamerican1293-102
  19. Sun, W., Chen, Z., Kang, Y. H., 10.1088/1674-1056/21/1/010504, Chin. Phys. B 21 (2012), 010504. DOI10.1088/1674-1056/21/1/010504
  20. Sun, W. G., Li, S. X., 10.1007/s11071-014-1311-7, Nonlinear Dyn. 77 (2014), 481-489. Zbl1314.34121MR3229176DOI10.1007/s11071-014-1311-7
  21. Sun, Y. Z., Li, W., Ruan, J., 10.1088/0253-6102/58/5/13, Commun. Theor. Phys. 58 (2012), 697-703. Zbl1264.05128MR3089102DOI10.1088/0253-6102/58/5/13
  22. Sun, Y. Z., Li, W., Ruan, J., 10.1016/j.cnsns.2012.08.040, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 989-998. MR2996611DOI10.1016/j.cnsns.2012.08.040
  23. Sun, Y. Z., Li, W., Zhao, D. H., 10.1063/1.4731265, Chaos 22 (2012), 023152. MR3388569DOI10.1063/1.4731265
  24. Sun, W. G., Wu, Y. Q., Zhang, J. Y., Qin, S., 10.1016/j.jfranklin.2014.08.004, J. Franklin Inst. 352 (2015), 3166-3177. MR3369921DOI10.1016/j.jfranklin.2014.08.004
  25. Sun, W. G., Wang, S., Wang, G. H., Wu, Y. Q., 10.1007/s11071-014-1838-7, Nonlinear Dyn. 79 (2015), 2659-2666. MR3317469DOI10.1007/s11071-014-1838-7
  26. Tan, S. L., Lü, J. H., Yu, X. H., Hill, D. J., 10.1007/s11434-013-5984-y, Chin. Sci. Bull. 58 (2013), 28 - 29, 3491-3498. DOI10.1007/s11434-013-5984-y
  27. Tan, S. L., Lü, J. H., Hill, D. J., 10.1109/tac.2014.2329235, IEEE Trans. Automat. Control 60 (2015), 2, 576-581. MR3310190DOI10.1109/tac.2014.2329235
  28. Vincent, U. E., Guo, R., 10.1016/j.physleta.2011.04.041 MR2737904DOI10.1016/j.physleta.2011.04.041
  29. Watts, D. J., Strogatz, S. H., 10.1038/30918, Nature 393 (1998), 440-442. DOI10.1038/30918
  30. Wong, Y. C., Sundareshan, M. K., A simplex trained neural network-based architecture for sensor fusion and tracking of target maneuvers., Kybernetika 35 (1999), 613-636. Zbl1274.93265MR1728471
  31. Wu, Z. Y., Fu, X. C., 10.1007/s11071-011-0296-8, Nonlinear Dyn. 69 (2012), 685-692. Zbl1258.34131MR2929902DOI10.1007/s11071-011-0296-8
  32. Wu, Z. G., Park, J. H., Su, H. Y., Chu, J., 10.1007/s11071-012-0404-4, Nonlinear Dyn. 69 (2012), 102-109. Zbl1263.34075MR2945537DOI10.1007/s11071-012-0404-4
  33. Wu, Z. Y., Ye, Q. L., Liu, D. F., 10.1142/s0129183113500587, Int. J. Mod. Phys. C 24 (2013), 1350058. MR3103796DOI10.1142/s0129183113500587
  34. Yang, X. S., Cao, J. D., Lu, J. Q., 10.1016/j.nonrwa.2011.01.007, Nonlinear Anal., Real World Appl. 12 (2011), 2252-2266. Zbl1223.37115MR2801017DOI10.1016/j.nonrwa.2011.01.007
  35. Yang, X., Wu, Z. Y., Cao, J. D., 10.1007/s11071-013-0942-4, Nonlinear Dyn. 73 (2013), 2313-2327. Zbl1281.34100MR3094795DOI10.1007/s11071-013-0942-4
  36. Zheng, C., Cao, J. D., 10.1155/2013/378376, J. Appl. Math. 2013 (2013), 378376. MR3045405DOI10.1155/2013/378376
  37. Zhong, W. S., Stefanovski, J. D., Dimirovski, G. M., Zhao, J., Decentralized control and synchronization of time-varying complex dynamical network., Kybernetika 45 (2009), 151-167. Zbl1158.34332MR2489586
  38. Zhou, J., Lu, J. A., Lü, J. H., 10.1109/tac.2006.872760, IEEE Trans. Automat. Control 51 (2006), 4, 652-656. MR2228029DOI10.1109/tac.2006.872760
  39. Zhou, J., Lu, J. A., Lü, J. H., 10.1016/j.automatica.2007.08.016, Automatica 44 (2008), 4, 996-1003. Zbl1158.93339MR2530942DOI10.1016/j.automatica.2007.08.016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.