The local lifting problem for actions of finite groups on curves

Ted Chinburg; Robert Guralnick; David Harbater

Annales scientifiques de l'École Normale Supérieure (2011)

  • Volume: 44, Issue: 4, page 537-605
  • ISSN: 0012-9593

Abstract

top
Let k be an algebraically closed field of characteristic p > 0 . We study obstructions to lifting to characteristic 0 the faithful continuous action φ of a finite group G on k [ [ t ] ] . To each such  φ a theorem of Katz and Gabber associates an action of G on a smooth projective curve Y over k . We say that the KGB obstruction of φ vanishes if G acts on a smooth projective curve X in characteristic  0 in such a way that X / H and Y / H have the same genus for all subgroups H G . We determine for which G the KGB obstruction of every φ vanishes. We also consider analogous problems in which one requires only that an obstruction to lifting φ due to Bertin vanishes for some φ , or for all sufficiently ramified φ . These results provide evidence for the strengthening of Oort’s lifting conjecture which is discussed in [8, Conj. 1.2].

How to cite

top

Chinburg, Ted, Guralnick, Robert, and Harbater, David. "The local lifting problem for actions of finite groups on curves." Annales scientifiques de l'École Normale Supérieure 44.4 (2011): 537-605. <http://eudml.org/doc/272151>.

@article{Chinburg2011,
abstract = {Let $k$ be an algebraically closed field of characteristic $p &gt; 0$. We study obstructions to lifting to characteristic $0$ the faithful continuous action $\phi $ of a finite group $G$ on $k[[t]]$. To each such $\phi $ a theorem of Katz and Gabber associates an action of $G$ on a smooth projective curve $Y$ over $k$. We say that the KGB obstruction of $\phi $ vanishes if $G$ acts on a smooth projective curve $X$ in characteristic $0$ in such a way that $X/H$ and $Y/H$ have the same genus for all subgroups $H \subset G$. We determine for which $G$ the KGB obstruction of every $\phi $ vanishes. We also consider analogous problems in which one requires only that an obstruction to lifting $\phi $ due to Bertin vanishes for some $\phi $, or for all sufficiently ramified $\phi $. These results provide evidence for the strengthening of Oort’s lifting conjecture which is discussed in [8, Conj. 1.2].},
author = {Chinburg, Ted, Guralnick, Robert, Harbater, David},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Galois groups; curves; automorphisms; characteristic $p$; lifting; Oort conjecture},
language = {eng},
number = {4},
pages = {537-605},
publisher = {Société mathématique de France},
title = {The local lifting problem for actions of finite groups on curves},
url = {http://eudml.org/doc/272151},
volume = {44},
year = {2011},
}

TY - JOUR
AU - Chinburg, Ted
AU - Guralnick, Robert
AU - Harbater, David
TI - The local lifting problem for actions of finite groups on curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 4
SP - 537
EP - 605
AB - Let $k$ be an algebraically closed field of characteristic $p &gt; 0$. We study obstructions to lifting to characteristic $0$ the faithful continuous action $\phi $ of a finite group $G$ on $k[[t]]$. To each such $\phi $ a theorem of Katz and Gabber associates an action of $G$ on a smooth projective curve $Y$ over $k$. We say that the KGB obstruction of $\phi $ vanishes if $G$ acts on a smooth projective curve $X$ in characteristic $0$ in such a way that $X/H$ and $Y/H$ have the same genus for all subgroups $H \subset G$. We determine for which $G$ the KGB obstruction of every $\phi $ vanishes. We also consider analogous problems in which one requires only that an obstruction to lifting $\phi $ due to Bertin vanishes for some $\phi $, or for all sufficiently ramified $\phi $. These results provide evidence for the strengthening of Oort’s lifting conjecture which is discussed in [8, Conj. 1.2].
LA - eng
KW - Galois groups; curves; automorphisms; characteristic $p$; lifting; Oort conjecture
UR - http://eudml.org/doc/272151
ER -

References

top
  1. [1] M. Aschbacher, Finite group theory, second éd., Cambridge Studies in Advanced Math. 10, Cambridge Univ. Press, 2000. Zbl0997.20001MR1777008
  2. [2] J. Bertin, Obstructions locales au relèvement de revêtements galoisiens de courbes lisses, C. R. Acad. Sci. Paris Sér. I Math.326 (1998), 55–58. Zbl0952.14018MR1649485
  3. [3] J. Bertin & A. Mézard, Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math.141 (2000), 195–238. Zbl0993.14014MR1767273
  4. [4] I. I. Bouw & S. Wewers, The local lifting problem for dihedral groups, Duke Math. J.134 (2006), 421–452. Zbl1108.14025MR2254623
  5. [5] I. I. Bouw, S. Wewers & L. Zapponi, Deformation data, Belyi maps, and the local lifting problem, Trans. Amer. Math. Soc. 361 (2009), 6645–6659. Zbl1244.11065MR2538609
  6. [6] L. H. Brewis, Liftable D 4 -covers, Manuscripta Math.126 (2008), 293–313. Zbl1158.14027MR2411230
  7. [7] L. H. Brewis & S. Wewers, Artin characters, Hurwitz trees and the lifting problem, Math. Ann. 345 (2009), 711–730. Zbl1222.14045MR2534115
  8. [8] T. Chinburg, R. Guralnick & D. Harbater, Oort groups and lifting problems, Compos. Math.144 (2008), 849–866. Zbl1158.12003MR2441248
  9. [9] J.-M. Fontaine, Groupes de ramification et représentations d’Artin, Ann. Sci. École Norm. Sup.4 (1971), 337–392. Zbl0232.12006MR289458
  10. [10] D. Gorenstein, Finite groups, Harper & Row Publishers, 1968. Zbl0185.05701MR231903
  11. [11] B. Green, Automorphisms of formal power series rings over a valuation ring, in Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), Fields Inst. Commun. 33, Amer. Math. Soc., 2003, 79–87. Zbl1048.13012MR2018552
  12. [12] B. Green & M. Matignon, Liftings of Galois covers of smooth curves, Compositio Math.113 (1998), 237–272. Zbl0923.14006MR1645000
  13. [13] A. Grothendieck (éd.), Revêtements étales et groupe fondamental. Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Lect. Notes in Math. 224, Springer, 1971. Zbl0234.14002MR354651
  14. [14] A. Grothendieck & J. Dieudonné, Étude locale des schémas et des morphismes de schémas (EGA IV), Publ. Math. IHÉS 20 (1964), 24 (1965), 28 (1966), 32 (1967). Zbl0135.39701
  15. [15] D. Harbater, Fundamental groups and embedding problems in characteristic p , in Recent developments in the inverse Galois problem (Seattle, WA, 1993), Contemp. Math. 186, Amer. Math. Soc., 1995, 353–369. Zbl0858.14013MR1352282
  16. [16] N. M. Katz, Local-to-global extensions of representations of fundamental groups, Ann. Inst. Fourier (Grenoble) 36 (1986), 69–106. Zbl0564.14013MR867916
  17. [17] M. Matignon, p -groupes abéliens de type ( p , ... , p ) et disques ouverts p -adiques, Manuscripta Math.99 (1999), 93–109. Zbl0953.12004MR1697205
  18. [18] M. Matignon, Lifting ( / 2 ) 2 actions, preprint http://www.math.u-bordeaux.fr/~matignon/chap5.ps. MR848977
  19. [19] A. Mézard, Quelques problèmes de déformations en caractéristique mixte, Thèse de doctorat, Université Joseph Fourier, Grenoble, 1998. 
  20. [20] J. S. Milne, Étale cohomology, Princeton Mathematical Series 33, Princeton Univ. Press, 1980. Zbl0433.14012MR559531
  21. [21] F. Oort, Lifting algebraic curves, abelian varieties, and their endomorphisms to characteristic zero, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 165–195. Zbl0645.14017MR927980
  22. [22] G. Pagot, 𝔽 p -espaces vectoriels de formes différentielles logarithmiques sur la droite projective, J. Number Theory97 (2002), 58–94. Zbl1076.14504MR1939137
  23. [23] G. Pagot, Relèvement en caractéristique zéro d’actions de groupes abéliens de type ( p , ... , p ) , Thèse de doctorat, Université Bordeaux I, 2002. 
  24. [24] F. Pop, Étale Galois covers of affine smooth curves. The geometric case of a conjecture of Shafarevich. On Abhyankar’s conjecture, Invent. Math. 120 (1995), 555–578. Zbl0842.14017MR1334484
  25. [25] R. J. Pries, Wildly ramified covers with large genus, J. Number Theory119 (2006), 194–209. Zbl1101.14045MR2250044
  26. [26] T. Sekiguchi, F. Oort & N. Suwa, On the deformation of Artin-Schreier to Kummer, Ann. Sci. École Norm. Sup.22 (1989), 345–375. Zbl0714.14024MR1011987
  27. [27] J-P. Serre, Sur la rationalité des représentations d’Artin, Ann. of Math.72 (1960), 405–420. Zbl0202.32803MR171775
  28. [28] J-P. Serre, Corps locaux, Hermann, 1968, Deuxième édition, Publications de l’Université de Nancago, No. VIII. Zbl0137.02601MR354618
  29. [29] J-P. Serre, Linear representations of finite groups, Springer, 1977. Zbl0355.20006MR450380
  30. [30] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math. 106, Springer, 1986. Zbl0585.14026MR817210
  31. [31] V. P. Snaith, Explicit Brauer induction, Cambridge Studies in Advanced Math. 40, Cambridge Univ. Press, 1994. Zbl0991.20005MR1310780

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.