The local lifting problem for actions of finite groups on curves
Ted Chinburg; Robert Guralnick; David Harbater
Annales scientifiques de l'École Normale Supérieure (2011)
- Volume: 44, Issue: 4, page 537-605
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topChinburg, Ted, Guralnick, Robert, and Harbater, David. "The local lifting problem for actions of finite groups on curves." Annales scientifiques de l'École Normale Supérieure 44.4 (2011): 537-605. <http://eudml.org/doc/272151>.
@article{Chinburg2011,
abstract = {Let $k$ be an algebraically closed field of characteristic $p > 0$. We study obstructions to lifting to characteristic $0$ the faithful continuous action $\phi $ of a finite group $G$ on $k[[t]]$. To each such $\phi $ a theorem of Katz and Gabber associates an action of $G$ on a smooth projective curve $Y$ over $k$. We say that the KGB obstruction of $\phi $ vanishes if $G$ acts on a smooth projective curve $X$ in characteristic $0$ in such a way that $X/H$ and $Y/H$ have the same genus for all subgroups $H \subset G$. We determine for which $G$ the KGB obstruction of every $\phi $ vanishes. We also consider analogous problems in which one requires only that an obstruction to lifting $\phi $ due to Bertin vanishes for some $\phi $, or for all sufficiently ramified $\phi $. These results provide evidence for the strengthening of Oort’s lifting conjecture which is discussed in [8, Conj. 1.2].},
author = {Chinburg, Ted, Guralnick, Robert, Harbater, David},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Galois groups; curves; automorphisms; characteristic $p$; lifting; Oort conjecture},
language = {eng},
number = {4},
pages = {537-605},
publisher = {Société mathématique de France},
title = {The local lifting problem for actions of finite groups on curves},
url = {http://eudml.org/doc/272151},
volume = {44},
year = {2011},
}
TY - JOUR
AU - Chinburg, Ted
AU - Guralnick, Robert
AU - Harbater, David
TI - The local lifting problem for actions of finite groups on curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 4
SP - 537
EP - 605
AB - Let $k$ be an algebraically closed field of characteristic $p > 0$. We study obstructions to lifting to characteristic $0$ the faithful continuous action $\phi $ of a finite group $G$ on $k[[t]]$. To each such $\phi $ a theorem of Katz and Gabber associates an action of $G$ on a smooth projective curve $Y$ over $k$. We say that the KGB obstruction of $\phi $ vanishes if $G$ acts on a smooth projective curve $X$ in characteristic $0$ in such a way that $X/H$ and $Y/H$ have the same genus for all subgroups $H \subset G$. We determine for which $G$ the KGB obstruction of every $\phi $ vanishes. We also consider analogous problems in which one requires only that an obstruction to lifting $\phi $ due to Bertin vanishes for some $\phi $, or for all sufficiently ramified $\phi $. These results provide evidence for the strengthening of Oort’s lifting conjecture which is discussed in [8, Conj. 1.2].
LA - eng
KW - Galois groups; curves; automorphisms; characteristic $p$; lifting; Oort conjecture
UR - http://eudml.org/doc/272151
ER -
References
top- [1] M. Aschbacher, Finite group theory, second éd., Cambridge Studies in Advanced Math. 10, Cambridge Univ. Press, 2000. Zbl0997.20001MR1777008
- [2] J. Bertin, Obstructions locales au relèvement de revêtements galoisiens de courbes lisses, C. R. Acad. Sci. Paris Sér. I Math.326 (1998), 55–58. Zbl0952.14018MR1649485
- [3] J. Bertin & A. Mézard, Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math.141 (2000), 195–238. Zbl0993.14014MR1767273
- [4] I. I. Bouw & S. Wewers, The local lifting problem for dihedral groups, Duke Math. J.134 (2006), 421–452. Zbl1108.14025MR2254623
- [5] I. I. Bouw, S. Wewers & L. Zapponi, Deformation data, Belyi maps, and the local lifting problem, Trans. Amer. Math. Soc. 361 (2009), 6645–6659. Zbl1244.11065MR2538609
- [6] L. H. Brewis, Liftable -covers, Manuscripta Math.126 (2008), 293–313. Zbl1158.14027MR2411230
- [7] L. H. Brewis & S. Wewers, Artin characters, Hurwitz trees and the lifting problem, Math. Ann. 345 (2009), 711–730. Zbl1222.14045MR2534115
- [8] T. Chinburg, R. Guralnick & D. Harbater, Oort groups and lifting problems, Compos. Math.144 (2008), 849–866. Zbl1158.12003MR2441248
- [9] J.-M. Fontaine, Groupes de ramification et représentations d’Artin, Ann. Sci. École Norm. Sup.4 (1971), 337–392. Zbl0232.12006MR289458
- [10] D. Gorenstein, Finite groups, Harper & Row Publishers, 1968. Zbl0185.05701MR231903
- [11] B. Green, Automorphisms of formal power series rings over a valuation ring, in Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), Fields Inst. Commun. 33, Amer. Math. Soc., 2003, 79–87. Zbl1048.13012MR2018552
- [12] B. Green & M. Matignon, Liftings of Galois covers of smooth curves, Compositio Math.113 (1998), 237–272. Zbl0923.14006MR1645000
- [13] A. Grothendieck (éd.), Revêtements étales et groupe fondamental. Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Lect. Notes in Math. 224, Springer, 1971. Zbl0234.14002MR354651
- [14] A. Grothendieck & J. Dieudonné, Étude locale des schémas et des morphismes de schémas (EGA IV), Publ. Math. IHÉS 20 (1964), 24 (1965), 28 (1966), 32 (1967). Zbl0135.39701
- [15] D. Harbater, Fundamental groups and embedding problems in characteristic , in Recent developments in the inverse Galois problem (Seattle, WA, 1993), Contemp. Math. 186, Amer. Math. Soc., 1995, 353–369. Zbl0858.14013MR1352282
- [16] N. M. Katz, Local-to-global extensions of representations of fundamental groups, Ann. Inst. Fourier (Grenoble) 36 (1986), 69–106. Zbl0564.14013MR867916
- [17] M. Matignon, -groupes abéliens de type et disques ouverts -adiques, Manuscripta Math.99 (1999), 93–109. Zbl0953.12004MR1697205
- [18] M. Matignon, Lifting actions, preprint http://www.math.u-bordeaux.fr/~matignon/chap5.ps. MR848977
- [19] A. Mézard, Quelques problèmes de déformations en caractéristique mixte, Thèse de doctorat, Université Joseph Fourier, Grenoble, 1998.
- [20] J. S. Milne, Étale cohomology, Princeton Mathematical Series 33, Princeton Univ. Press, 1980. Zbl0433.14012MR559531
- [21] F. Oort, Lifting algebraic curves, abelian varieties, and their endomorphisms to characteristic zero, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 165–195. Zbl0645.14017MR927980
- [22] G. Pagot, -espaces vectoriels de formes différentielles logarithmiques sur la droite projective, J. Number Theory97 (2002), 58–94. Zbl1076.14504MR1939137
- [23] G. Pagot, Relèvement en caractéristique zéro d’actions de groupes abéliens de type , Thèse de doctorat, Université Bordeaux I, 2002.
- [24] F. Pop, Étale Galois covers of affine smooth curves. The geometric case of a conjecture of Shafarevich. On Abhyankar’s conjecture, Invent. Math. 120 (1995), 555–578. Zbl0842.14017MR1334484
- [25] R. J. Pries, Wildly ramified covers with large genus, J. Number Theory119 (2006), 194–209. Zbl1101.14045MR2250044
- [26] T. Sekiguchi, F. Oort & N. Suwa, On the deformation of Artin-Schreier to Kummer, Ann. Sci. École Norm. Sup.22 (1989), 345–375. Zbl0714.14024MR1011987
- [27] J-P. Serre, Sur la rationalité des représentations d’Artin, Ann. of Math.72 (1960), 405–420. Zbl0202.32803MR171775
- [28] J-P. Serre, Corps locaux, Hermann, 1968, Deuxième édition, Publications de l’Université de Nancago, No. VIII. Zbl0137.02601MR354618
- [29] J-P. Serre, Linear representations of finite groups, Springer, 1977. Zbl0355.20006MR450380
- [30] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math. 106, Springer, 1986. Zbl0585.14026MR817210
- [31] V. P. Snaith, Explicit Brauer induction, Cambridge Studies in Advanced Math. 40, Cambridge Univ. Press, 1994. Zbl0991.20005MR1310780
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.