Locally analytic vectors of unitary principal series of
Ruochuan Liu; Bingyong Xie; Yuancao Zhang
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 1, page 167-190
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topLiu, Ruochuan, Xie, Bingyong, and Zhang, Yuancao. "Locally analytic vectors of unitary principal series of ${\mathrm {GL}}_2({\mathbb {Q}}_p)$." Annales scientifiques de l'École Normale Supérieure 45.1 (2012): 167-190. <http://eudml.org/doc/272161>.
@article{Liu2012,
abstract = {The $p$-adic local Langlands correspondence for $\{\mathrm \{GL\}\}_2(\{\mathbb \{Q\}\}_p)$ attaches to any $2$-dimensional irreducible $p$-adic representation $V$ of $G_\{\{\mathbb \{Q\}\}_p\}$ an admissible unitary representation $\Pi (V)$ of $\{\mathrm \{GL\}\}_2(\{\mathbb \{Q\}\}_p)$. The unitary principal series of $\{\mathrm \{GL\}\}_2(\{\mathbb \{Q\}\}_p)$ are those $\Pi (V)$ corresponding to trianguline representations. In this article, for $p>2$, using the machinery of Colmez, we determine the space of locally analytic vectors $\Pi (V)_\mathrm \{an\}$ for all non-exceptional unitary principal series $\Pi (V)$ of $\{\mathrm \{GL\}\}_2(\{\mathbb \{Q\}\}_p)$ by proving a conjecture of Emerton.},
author = {Liu, Ruochuan, Xie, Bingyong, Zhang, Yuancao},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {$p$-adic local Langlands correspondence; $(\varphi ,\gamma )$-modules; trianguline representations; unitary principal series; locally analytic vectors},
language = {eng},
number = {1},
pages = {167-190},
publisher = {Société mathématique de France},
title = {Locally analytic vectors of unitary principal series of $\{\mathrm \{GL\}\}_2(\{\mathbb \{Q\}\}_p)$},
url = {http://eudml.org/doc/272161},
volume = {45},
year = {2012},
}
TY - JOUR
AU - Liu, Ruochuan
AU - Xie, Bingyong
AU - Zhang, Yuancao
TI - Locally analytic vectors of unitary principal series of ${\mathrm {GL}}_2({\mathbb {Q}}_p)$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 1
SP - 167
EP - 190
AB - The $p$-adic local Langlands correspondence for ${\mathrm {GL}}_2({\mathbb {Q}}_p)$ attaches to any $2$-dimensional irreducible $p$-adic representation $V$ of $G_{{\mathbb {Q}}_p}$ an admissible unitary representation $\Pi (V)$ of ${\mathrm {GL}}_2({\mathbb {Q}}_p)$. The unitary principal series of ${\mathrm {GL}}_2({\mathbb {Q}}_p)$ are those $\Pi (V)$ corresponding to trianguline representations. In this article, for $p>2$, using the machinery of Colmez, we determine the space of locally analytic vectors $\Pi (V)_\mathrm {an}$ for all non-exceptional unitary principal series $\Pi (V)$ of ${\mathrm {GL}}_2({\mathbb {Q}}_p)$ by proving a conjecture of Emerton.
LA - eng
KW - $p$-adic local Langlands correspondence; $(\varphi ,\gamma )$-modules; trianguline representations; unitary principal series; locally analytic vectors
UR - http://eudml.org/doc/272161
ER -
References
top- [1] L. Berger, Représentations -adiques et équations différentielles, Invent. Math.148 (2002), 219–284. Zbl1113.14016MR1906150
- [2] L. Berger, Équations différentielles -adiques et -modules filtrés, Astérisque319 (2008), 13–38. Zbl1168.11019
- [3] L. Berger & C. Breuil, Sur quelques représentations potentiellement cristallines de , Astérisque330 (2010), 155–211. Zbl1243.11063
- [4] C. Breuil, Invariant et série spéciale -adique, Ann. Sci. École Norm. Sup.37 (2004), 559–610. Zbl1166.11331
- [5] C. Breuil, Série spéciale -adique et cohomologie étale complétée, Astérisque331 (2010), 65–115. Zbl1246.11106
- [6] F. Cherbonnier & P. Colmez, Représentations -adiques surconvergentes, Invent. Math.133 (1998), 581–611. Zbl0928.11051
- [7] P. Colmez, Représentations triangulines de dimension 2, Astérisque319 (2008), 213–258. Zbl1168.11022
- [8] P. Colmez, Fonctions d’une variable -adique, Astérisque330 (2010), 13–59. Zbl1223.11144
- [9] P. Colmez, La série principale unitaire de , Astérisque330 (2010), 213–262. Zbl1242.11095
- [10] P. Colmez, La série principale unitaire de : vecteurs localement analytiques, preprint, 2010.
- [11] P. Colmez, -modules et représentations du mirabolique de , Astérisque330 (2010), 61–153. Zbl1235.11107
- [12] P. Colmez, Représentations de et -modules, Astérisque330 (2010), 281–509. Zbl1218.11107
- [13] M. Emerton, A local-global compatibility conjecture in the -adic Langlands programme for , Pure Appl. Math. Q.2 (2006), 279–393. Zbl1254.11106MR2251474
- [14] J.-M. Fontaine, Représentations -adiques des corps locaux. I, in The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Birkhäuser, 1990, 249–309. Zbl0743.11066MR1106901
- [15] K. S. Kedlaya, Slope filtrations for relative Frobenius, Astérisque319 (2008), 259–301. Zbl1168.11053MR2493220
- [16] R. Liu, Locally analytic vectors of some crystabelian representations of , Compositio math. 148 (2012), 28–64. Zbl1267.11059MR2881308
- [17] V. Paškūnas, On some crystalline representations of , Algebra Number Theory3 (2009), 411–421. Zbl1173.22015MR2525557
- [18] B. Perrin-Riou, Théorie d’Iwasawa des représentations -adiques semi-stables, Mém. Soc. Math. Fr. (N.S.) 84 (2001). Zbl1031.11064
- [19] P. Schneider, Nonarchimedean functional analysis, Springer Monographs in Math., Springer, 2002. Zbl0998.46044MR1869547
- [20] P. Schneider & J. Teitelbaum, -finite locally analytic representations, Represent. Theory5 (2001), 111–128. Zbl1028.17007MR1835001
- [21] P. Schneider & J. Teitelbaum, Locally analytic distributions and -adic representation theory, with applications to , J. Amer. Math. Soc.15 (2002), 443–468. Zbl1028.11071MR1887640
- [22] P. Schneider & J. Teitelbaum, Algebras of -adic distributions and admissible representations, Invent. Math.153 (2003), 145–196. Zbl1028.11070MR1990669
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.