Locally analytic vectors of unitary principal series of  GL 2 ( p )

Ruochuan Liu; Bingyong Xie; Yuancao Zhang

Annales scientifiques de l'École Normale Supérieure (2012)

  • Volume: 45, Issue: 1, page 167-190
  • ISSN: 0012-9593

Abstract

top
The p -adic local Langlands correspondence for  GL 2 ( p ) attaches to any 2 -dimensional irreducible p -adic representation V of  G p an admissible unitary representation Π ( V ) of  GL 2 ( p ) . The unitary principal series of  GL 2 ( p ) are those Π ( V ) corresponding to trianguline representations. In this article, for  p > 2 , using the machinery of Colmez, we determine the space of locally analytic vectors Π ( V ) an for all non-exceptional unitary principal series Π ( V ) of  GL 2 ( p ) by proving a conjecture of Emerton.

How to cite

top

Liu, Ruochuan, Xie, Bingyong, and Zhang, Yuancao. "Locally analytic vectors of unitary principal series of ${\mathrm {GL}}_2({\mathbb {Q}}_p)$." Annales scientifiques de l'École Normale Supérieure 45.1 (2012): 167-190. <http://eudml.org/doc/272161>.

@article{Liu2012,
abstract = {The $p$-adic local Langlands correspondence for $\{\mathrm \{GL\}\}_2(\{\mathbb \{Q\}\}_p)$ attaches to any $2$-dimensional irreducible $p$-adic representation $V$ of $G_\{\{\mathbb \{Q\}\}_p\}$ an admissible unitary representation $\Pi (V)$ of $\{\mathrm \{GL\}\}_2(\{\mathbb \{Q\}\}_p)$. The unitary principal series of $\{\mathrm \{GL\}\}_2(\{\mathbb \{Q\}\}_p)$ are those $\Pi (V)$ corresponding to trianguline representations. In this article, for $p&gt;2$, using the machinery of Colmez, we determine the space of locally analytic vectors $\Pi (V)_\mathrm \{an\}$ for all non-exceptional unitary principal series $\Pi (V)$ of $\{\mathrm \{GL\}\}_2(\{\mathbb \{Q\}\}_p)$ by proving a conjecture of Emerton.},
author = {Liu, Ruochuan, Xie, Bingyong, Zhang, Yuancao},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {$p$-adic local Langlands correspondence; $(\varphi ,\gamma )$-modules; trianguline representations; unitary principal series; locally analytic vectors},
language = {eng},
number = {1},
pages = {167-190},
publisher = {Société mathématique de France},
title = {Locally analytic vectors of unitary principal series of $\{\mathrm \{GL\}\}_2(\{\mathbb \{Q\}\}_p)$},
url = {http://eudml.org/doc/272161},
volume = {45},
year = {2012},
}

TY - JOUR
AU - Liu, Ruochuan
AU - Xie, Bingyong
AU - Zhang, Yuancao
TI - Locally analytic vectors of unitary principal series of ${\mathrm {GL}}_2({\mathbb {Q}}_p)$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 1
SP - 167
EP - 190
AB - The $p$-adic local Langlands correspondence for ${\mathrm {GL}}_2({\mathbb {Q}}_p)$ attaches to any $2$-dimensional irreducible $p$-adic representation $V$ of $G_{{\mathbb {Q}}_p}$ an admissible unitary representation $\Pi (V)$ of ${\mathrm {GL}}_2({\mathbb {Q}}_p)$. The unitary principal series of ${\mathrm {GL}}_2({\mathbb {Q}}_p)$ are those $\Pi (V)$ corresponding to trianguline representations. In this article, for $p&gt;2$, using the machinery of Colmez, we determine the space of locally analytic vectors $\Pi (V)_\mathrm {an}$ for all non-exceptional unitary principal series $\Pi (V)$ of ${\mathrm {GL}}_2({\mathbb {Q}}_p)$ by proving a conjecture of Emerton.
LA - eng
KW - $p$-adic local Langlands correspondence; $(\varphi ,\gamma )$-modules; trianguline representations; unitary principal series; locally analytic vectors
UR - http://eudml.org/doc/272161
ER -

References

top
  1. [1] L. Berger, Représentations p -adiques et équations différentielles, Invent. Math.148 (2002), 219–284. Zbl1113.14016MR1906150
  2. [2] L. Berger, Équations différentielles p -adiques et ( φ , N ) -modules filtrés, Astérisque319 (2008), 13–38. Zbl1168.11019
  3. [3] L. Berger & C. Breuil, Sur quelques représentations potentiellement cristallines de GL 2 ( 𝐐 p ) , Astérisque330 (2010), 155–211. Zbl1243.11063
  4. [4] C. Breuil, Invariant et série spéciale p -adique, Ann. Sci. École Norm. Sup.37 (2004), 559–610. Zbl1166.11331
  5. [5] C. Breuil, Série spéciale p -adique et cohomologie étale complétée, Astérisque331 (2010), 65–115. Zbl1246.11106
  6. [6] F. Cherbonnier & P. Colmez, Représentations p -adiques surconvergentes, Invent. Math.133 (1998), 581–611. Zbl0928.11051
  7. [7] P. Colmez, Représentations triangulines de dimension 2, Astérisque319 (2008), 213–258. Zbl1168.11022
  8. [8] P. Colmez, Fonctions d’une variable p -adique, Astérisque330 (2010), 13–59. Zbl1223.11144
  9. [9] P. Colmez, La série principale unitaire de GL 2 ( 𝐐 p ) , Astérisque330 (2010), 213–262. Zbl1242.11095
  10. [10] P. Colmez, La série principale unitaire de GL 2 ( 𝐐 p ) : vecteurs localement analytiques, preprint, 2010. 
  11. [11] P. Colmez, ( φ , Γ ) -modules et représentations du mirabolique de GL 2 ( 𝐐 p ) , Astérisque330 (2010), 61–153. Zbl1235.11107
  12. [12] P. Colmez, Représentations de GL 2 ( 𝐐 p ) et ( φ , Γ ) -modules, Astérisque330 (2010), 281–509. Zbl1218.11107
  13. [13] M. Emerton, A local-global compatibility conjecture in the p -adic Langlands programme for GL 2 / , Pure Appl. Math. Q.2 (2006), 279–393. Zbl1254.11106MR2251474
  14. [14] J.-M. Fontaine, Représentations p -adiques des corps locaux. I, in The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Birkhäuser, 1990, 249–309. Zbl0743.11066MR1106901
  15. [15] K. S. Kedlaya, Slope filtrations for relative Frobenius, Astérisque319 (2008), 259–301. Zbl1168.11053MR2493220
  16. [16] R. Liu, Locally analytic vectors of some crystabelian representations of GL 2 ( p ) , Compositio math. 148 (2012), 28–64. Zbl1267.11059MR2881308
  17. [17] V. Paškūnas, On some crystalline representations of GL 2 ( p ) , Algebra Number Theory3 (2009), 411–421. Zbl1173.22015MR2525557
  18. [18] B. Perrin-Riou, Théorie d’Iwasawa des représentations p -adiques semi-stables, Mém. Soc. Math. Fr. (N.S.) 84 (2001). Zbl1031.11064
  19. [19] P. Schneider, Nonarchimedean functional analysis, Springer Monographs in Math., Springer, 2002. Zbl0998.46044MR1869547
  20. [20] P. Schneider & J. Teitelbaum, U ( 𝔤 ) -finite locally analytic representations, Represent. Theory5 (2001), 111–128. Zbl1028.17007MR1835001
  21. [21] P. Schneider & J. Teitelbaum, Locally analytic distributions and p -adic representation theory, with applications to GL 2 , J. Amer. Math. Soc.15 (2002), 443–468. Zbl1028.11071MR1887640
  22. [22] P. Schneider & J. Teitelbaum, Algebras of p -adic distributions and admissible representations, Invent. Math.153 (2003), 145–196. Zbl1028.11070MR1990669

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.