Invariant L et série spéciale p-adique

Christophe Breuil

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 4, page 559-610
  • ISSN: 0012-9593

How to cite

top

Breuil, Christophe. "Invariant $L$ et série spéciale p-adique." Annales scientifiques de l'École Normale Supérieure 37.4 (2004): 559-610. <http://eudml.org/doc/82640>.

@article{Breuil2004,
author = {Breuil, Christophe},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {4},
pages = {559-610},
publisher = {Elsevier},
title = {Invariant $L$ et série spéciale p-adique},
url = {http://eudml.org/doc/82640},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Breuil, Christophe
TI - Invariant $L$ et série spéciale p-adique
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 4
SP - 559
EP - 610
LA - fre
UR - http://eudml.org/doc/82640
ER -

References

top
  1. [1] Barthel L., Livné R., Modular representations of GL 2 of a local field: the ordinary, unramified case, J. Number Theory55 (1995) 1-27. Zbl0841.11026MR1361556
  2. [2] Barthel L., Livné R., Irreducible modular representations of GL 2 of a local field, Duke Math. J.75 (1994) 261-292. Zbl0826.22019MR1290194
  3. [3] Bertolini M., Darmon H., Iovita A., Spiess M., Teitelbaum's exceptional zero conjecture in the anticyclotomic setting, Amer. J. Math.124 (2002) 411-449. Zbl1079.11036MR1890998
  4. [4] Breuil C., Intégration p-adique, in: Séminaire Bourbaki 860, Astérisque, vol. 266, 2000, pp. 319-350. Zbl1015.11028MR1772678
  5. [5] Breuil C., p-adic Hodge theory, deformations and local Langlands, cours au C.R.M. de Barcelone, juillet 2001, disponible à l'adresse, http://www.math.u-psud.fr/~breuil/. 
  6. [6] Breuil C., Sur quelques représentations modulaires et p-adiques de GL 2 Q p I, Comp. Math.138 (2003) 165-188. Zbl1044.11041MR2018825
  7. [7] Breuil C., Sur quelques représentations modulaires et p-adiques de GL 2 Q p II, J. Institut Math. Jussieu2 (2003) 23-58. Zbl1165.11319MR1955206
  8. [8] Breuil C., Série spéciale p-adique et cohomologie étale complétée, prépublication I.H.É.S., 2003, disponible à l'adresse, http://www.ihes.fr/~breuil/publications.html. 
  9. [9] Breuil C., Mézard A., Multiplicités modulaires et représentations de GL 2 Z p et de Gal ( Q ¯ p / Q p ) en = p , Duke Math. J.115 (2002) 205-310. Zbl1042.11030MR1944572
  10. [10] Coleman R., A p-adic Shimura isomorphism and p-adic periods of modular forms, Contemp. Math.165 (1994) 21-51. Zbl0838.11033MR1279600
  11. [11] Colmez P., Fontaine J.-M., Construction des représentations p-adiques semi-stables, Invent. Math.140 (2000) 1-43. Zbl1010.14004MR1779803
  12. [12] Deligne P., Formes modulaires et représentations de GL 2 , in: Modular Functions of One Variable II, Lecture Notes, vol. 349, 1973, pp. 55-105. Zbl0271.10032MR347738
  13. [13] Deligne P., Serre J.-P., Formes modulaires de poids 1, Ann. Sci. E.N.S.7 (1974) 507-530. Zbl0321.10026MR379379
  14. [14] Emerton M., On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, prépublication 2003. 
  15. [15] Féaux de Lacroix C.T., Einige Resultate über die topologischen Darstellungen p-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem p-adischen Körper, in: Schriftenreihe Math. Univ. Münster, 3. Serie, Heft 23, 1999, pp. 1-111. Zbl0963.22009MR1691735
  16. [16] Fontaine J.-M., Représentations ℓ-adiques potentiellement semi-stables, in: Astérisque, vol. 223, Soc. Math. France, 1994, pp. 321-347. Zbl0873.14020MR1293977
  17. [17] Grosse-Klönne E., Integral structures in automorphic line bundles on the p-adic upper half plane, Math. Annalen329 (2004) 463-493. Zbl1087.11029MR2127986
  18. [18] Iovita A., Spiess M., Derivatives of p-adic L-functions, Heegner cycles and monodromy modules attached to modular forms, Invent. Math.154 (2003) 333-384. Zbl1099.11032MR2013784
  19. [19] Mazur B., On monodromy invariants occurring in global arithmetic, and Fontaine's theory, in: Contemp. Math., vol. 165, 1994, pp. 1-20. Zbl0846.11039MR1279599
  20. [20] Mazur B., Tate J., Teitelbaum J., On p-adic analogues of the conjectures of Birch and Swinnerton–Dyer, Invent. Math.84 (1986) 1-48. Zbl0699.14028MR830037
  21. [21] Morita Y., A p-adic theory of hyperfunctions I, Publ. R.I.M.S.17 (1981) 1-24. Zbl0457.12010MR613933
  22. [22] Morita Y., Analytic representations of SL 2 over a p -adic number field II, in: Prog. Math., vol. 46, Birkhäuser, 1984, pp. 282-297. Zbl0549.22008MR763019
  23. [23] Saito T., Modular forms and p-adic Hodge theory, Invent. Math.129 (1997) 607-620. Zbl0877.11034MR1465337
  24. [24] Schneider P., Nonarchimedean Functional Analysis, Springer-Verlag, 2001. Zbl0998.46044MR1869547
  25. [25] Schneider P., Teitelbaum J., Locally analytic distributions and p-adic representation theory, with applications to GL 2 , J. Amer. Math. Soc.15 (2002) 443-468. Zbl1028.11071MR1887640
  26. [26] Schneider P., Teitelbaum J., U g -finite locally analytic representations, Representation Theory5 (2001) 111-128. Zbl1028.17007MR1835001
  27. [27] Schneider P., Teitelbaum J., Banach space representations and Iwasawa theory, Israel J. Math.127 (2002) 359-380. Zbl1006.46053MR1900706
  28. [28] Schneider P., Teitelbaum J., p-adic boundary values, in: Astérisque, vol. 278, Soc. Math. France, 2002, pp. 51-125. Zbl1051.14024MR1922824
  29. [29] Schneider P., Teitelbaum J., Algebras of p-adic distributions and admissible representations, Invent. Math.153 (2003) 145-196. Zbl1028.11070MR1990669
  30. [30] de Shalit E., Eichler cohomology and periods of modular forms on p-adic Schottky groups, J. Reine Angew. Math.400 (1989) 3-31. Zbl0674.14031MR1013723
  31. [31] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, Mathematical Society of Japan. Zbl0221.10029MR1291394
  32. [32] Teitelbaum J., Values of p-adic L-functions and a p-adic Poisson kernel, Invent. Math.101 (1990) 395-410. Zbl0731.11065MR1062968
  33. [33] Teitelbaum J., Modular representations of PGL 2 and automorphic forms for Shimura curves, Invent. Math.113 (1993) 561-580. Zbl0806.11027MR1231837
  34. [34] Vignéras M.-F., Arithmétique des algèbres de quaternions, Lecture Notes in Math., vol. 800, Springer, 1980. Zbl0422.12008MR580949

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.