Isospectrality for quantum toric integrable systems

Laurent Charles; Álvaro Pelayo; San Vũ Ngoc

Annales scientifiques de l'École Normale Supérieure (2013)

  • Volume: 46, Issue: 5, page 815-849
  • ISSN: 0012-9593

Abstract

top
We give a full description of the semiclassical spectral theory of quantum toric integrable systems using microlocal analysis for Toeplitz operators. This allows us to settle affirmatively the isospectral problem for quantum toric integrable systems: the semiclassical joint spectrum of the system, given by a sequence of commuting Toeplitz operators on a sequence of Hilbert spaces, determines the classical integrable system given by the symplectic manifold and commuting Hamiltonians. This type of problem belongs to the realm of classical questions in spectral theory going back to pioneer works of Colin de Verdière, Guillemin, Sternberg and others in the 1970s and 1980s.

How to cite

top

Charles, Laurent, Pelayo, Álvaro, and Ngoc, San Vũ. "Isospectrality for quantum toric integrable systems." Annales scientifiques de l'École Normale Supérieure 46.5 (2013): 815-849. <http://eudml.org/doc/272164>.

@article{Charles2013,
abstract = {We give a full description of the semiclassical spectral theory of quantum toric integrable systems using microlocal analysis for Toeplitz operators. This allows us to settle affirmatively the isospectral problem for quantum toric integrable systems: the semiclassical joint spectrum of the system, given by a sequence of commuting Toeplitz operators on a sequence of Hilbert spaces, determines the classical integrable system given by the symplectic manifold and commuting Hamiltonians. This type of problem belongs to the realm of classical questions in spectral theory going back to pioneer works of Colin de Verdière, Guillemin, Sternberg and others in the 1970s and 1980s.},
author = {Charles, Laurent, Pelayo, Álvaro, Ngoc, San Vũ},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {semi-classical analysis; symplectic geometry; operator spectrum; Toeplitz operators; toric symplectic manifold},
language = {eng},
number = {5},
pages = {815-849},
publisher = {Société mathématique de France},
title = {Isospectrality for quantum toric integrable systems},
url = {http://eudml.org/doc/272164},
volume = {46},
year = {2013},
}

TY - JOUR
AU - Charles, Laurent
AU - Pelayo, Álvaro
AU - Ngoc, San Vũ
TI - Isospectrality for quantum toric integrable systems
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2013
PB - Société mathématique de France
VL - 46
IS - 5
SP - 815
EP - 849
AB - We give a full description of the semiclassical spectral theory of quantum toric integrable systems using microlocal analysis for Toeplitz operators. This allows us to settle affirmatively the isospectral problem for quantum toric integrable systems: the semiclassical joint spectrum of the system, given by a sequence of commuting Toeplitz operators on a sequence of Hilbert spaces, determines the classical integrable system given by the symplectic manifold and commuting Hamiltonians. This type of problem belongs to the realm of classical questions in spectral theory going back to pioneer works of Colin de Verdière, Guillemin, Sternberg and others in the 1970s and 1980s.
LA - eng
KW - semi-classical analysis; symplectic geometry; operator spectrum; Toeplitz operators; toric symplectic manifold
UR - http://eudml.org/doc/272164
ER -

References

top
  1. [1] M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc.14 (1982), 1–15. Zbl0482.58013MR642416
  2. [2] P. Bérard, Transplantation et isospectralité. I, Math. Ann. 292 (1992), 547–559. MR1152950
  3. [3] J. Brüning & E. Heintze, Spektrale Starrheit gewisser Drehflächen, Math. Ann.269 (1984), 95–101. Zbl0553.53028MR756778
  4. [4] P. Buser, Isospectral Riemann surfaces, Ann. Inst. Fourier (Grenoble) 36 (1986), 167–192. Zbl0579.53036MR850750
  5. [5] A.-M. Charbonnel, Comportement semi-classique du spectre conjoint d’opérateurs pseudodifférentiels qui commutent, Asymptotic Anal.1 (1988), 227–261. Zbl0665.35080MR962310
  6. [6] A.-M. Charbonnel & G. Popov, A semi-classical trace formula for several commuting operators, Comm. Partial Differential Equations24 (1999), 283–323. Zbl0927.35138MR1672009
  7. [7] L. Charles, Berezin-Toeplitz operators, a semi-classical approach, Comm. Math. Phys.239 (2003), 1–28. Zbl1059.47030MR1997113
  8. [8] L. Charles, Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators, Comm. Partial Differential Equations28 (2003), 1527–1566. Zbl1038.53086MR2001172
  9. [9] L. Charles, Symbolic calculus for Toeplitz operators with half-form, J. Symplectic Geom.4 (2006), 171–198. Zbl1123.58016MR2275003
  10. [10] L. Charles, Toeplitz operators and Hamiltonian torus actions, J. Funct. Anal.236 (2006), 299–350. Zbl1099.53059MR2227136
  11. [11] L. Charles, Semi-classical properties of geometric quantization with metaplectic correction, Comm. Math. Phys.270 (2007), 445–480. Zbl1118.53059MR2276452
  12. [12] L. Charles, On the quantization of polygon spaces, Asian J. Math.14 (2010), 109–152. Zbl1206.47095MR2726596
  13. [13] Y. Colin de Verdière, Spectre conjoint d’opérateurs pseudo-différentiels qui commutent. I. Le cas non intégrable, Duke Math. J. 46 (1979), 169–182. Zbl0411.35073MR523605
  14. [14] Y. Colin de Verdière, Spectre conjoint d’opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable, Math. Z. 171 (1980), 51–73. Zbl0478.35073MR566483
  15. [15] Y. Colin de Verdière, A semi-classical inverse problem II: reconstruction of the potential, in Geometric aspects of analysis and mechanics, Progr. Math. 292, Birkhäuser, 2011, 97–119. MR2809469
  16. [16] Y. Colin de Verdière& V. Guillemin, A semi-classical inverse problem I: Taylor expansions, in Geometric aspects of analysis and mechanics, Progr. Math. 292, Birkhäuser, 2011, 81–95. MR2809468
  17. [17] D. A. Cox, J. B. Little & H. K. Schenck, Toric varieties, Graduate Studies in Math. 124, Amer. Math. Soc., 2011. MR2810322
  18. [18] C. B. Croke & V. A. Sharafutdinov, Spectral rigidity of a compact negatively curved manifold, Topology37 (1998), 1265–1273. Zbl0936.58013MR1632920
  19. [19] V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), 85–134, 247. Zbl0425.14013MR495499
  20. [20] K. Datchev, H. Hezari & I. Ventura, Spectral uniqueness of radial semiclassical Schrödinger operators, Math. Res. Lett.18 (2011), 521–529. Zbl1241.35217MR2802585
  21. [21] T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. France116 (1988), 315–339. Zbl0676.58029MR984900
  22. [22] E. B. Dryden, V. Guillemin & R. Sena-Dias, Hearing Delzant polytopes from the equivariant spectrum, to appear in Trans. Amer. Math. Soc. Zbl1244.58011MR2846357
  23. [23] J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207–281. Zbl0285.35010MR405513
  24. [24] J. J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math.33 (1980), 687–706. Zbl0439.58014MR596430
  25. [25] J. J. Duistermaat, Principal fiber bundles, in Notes for the Utrecht Spring School, 2004, http://www.projects.science.uu.nl/Duistermaat/www/homepageHD/pf.pdf. 
  26. [26] J. J. Duistermaat, The heat kernel Lefschetz fixed point formula for the spin- c Dirac operator, Modern Birkhäuser Classics, Birkhäuser, 2011. Zbl1222.58014MR2809491
  27. [27] J. J. Duistermaat & L. Hörmander, Fourier integral operators. II, Acta Math. 128 (1972), 183–269. Zbl0232.47055MR388464
  28. [28] J. J. Duistermaat & Á. Pelayo, Reduced phase space and toric variety coordinatizations of Delzant spaces, Math. Proc. Cambridge Philos. Soc.146 (2009), 695–718. Zbl1163.53347MR2496353
  29. [29] A. Einstein, Zum Quantensatz von Sommerfeld und Epstein, Verhandlungen der Deutschen Physikalischen Gesellschaft19 (1917), 82–92. 
  30. [30] L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case, Comment. Math. Helv.65 (1990), 4–35. Zbl0702.58024MR1036125
  31. [31] M. D. Garay & D. van Straten, Classical and quantum integrability, Mosc. Math. J. 10 (2010), 519–545, 661. Zbl1202.81098MR2732572
  32. [32] C. Gordon, D. L. Webb & S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math.110 (1992), 1–22. Zbl0778.58068MR1181812
  33. [33] C. Gordon, D. L. Webb & S. Wolpert, One cannot hear the shape of a drum, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 134–138. Zbl0756.58049MR1136137
  34. [34] V. Guillemin, Moment maps and combinatorial invariants of Hamiltonian T n -spaces, Progress in Math. 122, Birkhäuser, 1994. Zbl0828.58001MR1301331
  35. [35] V. Guillemin & D. Kazhdan, Some inverse spectral results for negatively curved 2 -manifolds, Topology19 (1980), 301–312. Zbl0465.58027MR579579
  36. [36] V. Guillemin & S. Sternberg, Convexity properties of the moment mapping, Invent. Math.67 (1982), 491–513. Zbl0503.58017MR664117
  37. [37] V. Guillemin & S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math.67 (1982), 515–538. Zbl0503.58018MR664118
  38. [38] V. Guillemin & S. Sternberg, Symplectic techniques in physics, second éd., Cambridge Univ. Press, 1990. Zbl0734.58005MR1066693
  39. [39] L. Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), 79–183. Zbl0212.46601MR388463
  40. [40] A. Iantchenko, J. Sjöstrand & M. Zworski, Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett.9 (2002), 337–362. Zbl1258.35208MR1909649
  41. [41] M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1–23. Zbl0139.05603MR201237
  42. [42] Y. Karshon, L. Kessler & M. Pinsonnault, A compact symplectic four-manifold admits only finitely many inequivalent toric actions, J. Symplectic Geom.5 (2007), 139–166. Zbl1136.53060MR2377250
  43. [43] B. Kostant, Orbits, symplectic structures and representation theory, in Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo, 1966, p. 71. MR213476
  44. [44] B. Kostant, Quantization and unitary representations. I. Prequantization, in Lectures in modern analysis and applications, III, Springer, 1970, 87–208. Lecture Notes in Math., Vol. 170. MR294568
  45. [45] B. Kostant, Symplectic spinors, in Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), Academic Press, 1974, 139–152. MR400304
  46. [46] B. Kostant, On the definition of quantization, in Géométrie symplectique et physique mathématique (Colloq. Internat. CNRS, No. 237, Aix-en-Provence, 1974), Éditions du CNRS, Paris, 1975, 187–210. MR488137
  47. [47] B. Kostant & Á. Pelayo, Geometric quantization, a Lie theory approach, to appear as Springer Universitext. 
  48. [48] R. de la Llave, A tutorial on KAM theory, in Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math. 69, Amer. Math. Soc., 2001, 175–292. Zbl1055.37064MR1858536
  49. [49] I. Madsen & J. Tornehave, From calculus to cohomology, Cambridge Univ. Press, 1997. Zbl0884.57001MR1454127
  50. [50] H. P. J. McKean & I. M. Singer, Curvature and the eigenvalues of the Laplacian, J. Differential Geometry1 (1967), 43–69. Zbl0198.44301MR217739
  51. [51] A. Melin & J. Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque284 (2003), 181–244. Zbl1061.35186MR2003421
  52. [52] J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 542. Zbl0124.31202MR162204
  53. [53] L. Boutet de Monvel & V. Guillemin, The spectral theory of Toeplitz operators, Annals of Math. Studies 99, Princeton Univ. Press, 1981. Zbl0469.47021MR620794
  54. [54] B. Osgood, R. Phillips & P. Sarnak, Compact isospectral sets of plane domains, Proc. Nat. Acad. Sci. U.S.A.85 (1988), 5359–5361. Zbl0674.30021MR952815
  55. [55] B. Osgood, R. Phillips & P. Sarnak, Compact isospectral sets of surfaces, J. Funct. Anal.80 (1988), 212–234. Zbl0653.53021MR960229
  56. [56] B. Osgood, R. Phillips & P. Sarnak, Moduli space, heights and isospectral sets of plane domains, Ann. of Math.129 (1989), 293–362. Zbl0677.58045MR986795
  57. [57] Á. Pelayo & S. Vũ Ngọc, Semitoric integrable systems on symplectic 4-manifolds, Invent. Math.177 (2009), 571–597. Zbl1215.53071MR2534101
  58. [58] Á. Pelayo & S. Vũ Ngọc, Constructing integrable systems of semitoric type, Acta Math.206 (2011), 93–125. Zbl1225.53074MR2784664
  59. [59] Á. Pelayo & S. Vũ Ngọc, Symplectic theory of completely integrable Hamiltonian systems, Bull. Amer. Math. Soc. (N.S.) 48 (2011), 409–455. Zbl1230.37075MR2801777
  60. [60] Á. Pelayo & S. Vũ Ngọc, First steps in symplectic and spectral theory of integrable systems, Discrete Contin. Dyn. Syst.32 (2012), 3325–3377. Zbl1257.37038MR2945820
  61. [61] Á. Pelayo & S. Vũ Ngọc, Hamiltonian dynamics and spectral theory for spin-oscillators, Comm. Math. Phys.309 (2012), 123–154. Zbl1263.70022MR2864789
  62. [62] J.-M. Souriau, Quantification géométrique, Comm. Math. Phys.1 (1966), 374–398. Zbl1148.81307MR207332
  63. [63] J.-M. Souriau, Structure des systèmes dynamiques, Maîtrise de mathématiques, Dunod, 1970. MR260238
  64. [64] T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math.121 (1985), 169–186. Zbl0585.58047MR782558
  65. [65] J. A. Toth, On the quantum expected values of integrable metric forms, J. Differential Geom.52 (1999), 327–374. Zbl0992.53063MR1758299
  66. [66] J. A. Toth & S. Zelditch, Riemannian manifolds with uniformly bounded eigenfunctions, Duke Math. J.111 (2002), 97–132. Zbl1022.58013MR1876442
  67. [67] J. A. Toth & S. Zelditch, L p norms of eigenfunctions in the completely integrable case, Ann. Henri Poincaré4 (2003), 343–368. Zbl1028.58028MR1985776
  68. [68] G. M. Tuynman, Quantization: towards a comparison between methods, J. Math. Phys.28 (1987), 2829–2840. Zbl0639.58035MR917637
  69. [69] S. Vũ Ngọc, Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type, Comm. Pure Appl. Math.53 (2000), 143–217. Zbl1027.81012MR1721373
  70. [70] S. Vũ Ngọc, Systèmes intégrables semi-classiques : du local au global, Panoramas et Synthèses 22 (2006). 
  71. [71] S. Vũ Ngọc, Symplectic inverse spectral theory for pseudodifferential operators, in Geometric aspects of analysis and mechanics, Progr. Math. 292, Birkhäuser, 2011, 353–372. Zbl1277.47065MR2809478
  72. [72] H. Weyl, Über die asymptotische Verteilung der Eigenwerte, Göttinger Nachrichten (1911), 110–117. Zbl42.0432.03
  73. [73] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann.71 (1912), 441–479. Zbl43.0436.01MR1511670
  74. [74] S. Zelditch, Index and dynamics of quantized contact transformations, Ann. Inst. Fourier (Grenoble) 47 (1997), 305–363. Zbl0865.47018MR1437187
  75. [75] S. Zelditch, Inverse spectral problem for analytic domains. II. 2 -symmetric domains, Ann. of Math. 170 (2009), 205–269. Zbl1196.58016MR2521115

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.