Weak approximation and non-abellian fundamental groups

D. Harari

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 4, page 467-484
  • ISSN: 0012-9593

How to cite

top

Harari, D.. "Weak approximation and non-abellian fundamental groups." Annales scientifiques de l'École Normale Supérieure 33.4 (2000): 467-484. <http://eudml.org/doc/82523>.

@article{Harari2000,
author = {Harari, D.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {4},
pages = {467-484},
publisher = {Elsevier},
title = {Weak approximation and non-abellian fundamental groups},
url = {http://eudml.org/doc/82523},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Harari, D.
TI - Weak approximation and non-abellian fundamental groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 4
SP - 467
EP - 484
LA - eng
UR - http://eudml.org/doc/82523
ER -

References

top
  1. [1] BARTH W., PETERS C., VAN DE VEN A., Compact Complex Surfaces, Ergeb. der Math. und ihr. Grenzgeb., 3. Folge, Vol. 4, Springer, Berlin, 1984. Zbl0718.14023MR86c:32026
  2. [2] BEAUVILLE A., Surfaces algébriques complexes, Astérisque, Vol. 54, Soc. Math. Fr., Paris, 1978. Zbl0394.14014MR58 #5686
  3. [3] BOGOMOLOV F.A., TSCHINKEL Y., On the density of rational points on elliptic fibrations, Preprint, 1998. Zbl0957.14016
  4. [4] BOGOMOLOV F.A., TSCHINKEL Y., Density of rational points on Enriques surfaces, Preprint, 1998. Zbl0957.14016MR99m:14040
  5. [5] COLLIOT-THÉLÈNE J.-L., SANSUC J.-J., La descente sur les variétés rationnelles II, Duke Math. J. 54 (1987) 375-492. Zbl0659.14028MR89f:11082
  6. [6] COLLIOT-THÉLÈNE J.-L., SKOROBOGATOV A.N., SIR SWINNERTON-DYER P., Double fibres and double covers : paucity of rational points, Acta Arithmetica 79 (2) (1997) 113-135. Zbl0863.14011MR98a:11081
  7. [7] DEMAILLY J.-P., PETERNELL T., SCHNEIDER M., Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geometry 3 (1994) 295-345. Zbl0827.14027MR95f:32037
  8. [8] DOLGACHEV I., Algebraic surfaces with q = pg = 0, in : Algebraic Surfaces, C.I.M.E., III ciclo, 1977. 
  9. [9] EKEDAHL T., An effective version of Hilbert's irreducibility theorem, in : Goldstein C. (Ed.), Séminaire de Théorie des Nombres de Paris 1988-1989, Progress in Math., Vol. 91, Birkhäuser, 1990, pp. 241-248. Zbl0729.12005MR92f:14018
  10. [10] FREY G., JARDEN M., Approximation theory and the rank of abelian varieties over large algebraic fields, Proc. London Math. Soc. 28 (3) (1974) 112-128. Zbl0275.14021MR49 #2765
  11. [11] GROTHENDIECK A., DIEUDONNÉ J., Étude cohomologique des faisceaux cohérents (EGA3), I.H.E.S., Publ. Math. 11 (1961). 
  12. [12] GROTHENDIECK A., Revêtements étales et groupe fondamental (SGA1), Lecture Notes in Mathematics, Vol. 224, Springer, 1971. Zbl0234.14002MR50 #7129
  13. [13] GROTHENDIECK A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2), Adv. Studies in Pure Math., Masson-North-Holland, Paris, Amsterdam, 1968. Zbl0197.47202MR57 #16294
  14. [14] GROTHENDIECK A., Le groupe de Brauer, II, in : Dix Exposés sur la Cohomologie des Schémas, Masson-North-Holland, Amsterdam, 1968. Zbl0198.25803MR39 #5586b
  15. [15] GROTHENDIECK A., Le groupe de Brauer, III, in : Dix Exposés sur la Cohomologie des Schémas, Masson-North-Holland, Amsterdam, 1968. Zbl0198.25901MR39 #5586b
  16. [16] HARARI D., SKOROBOGATOV A.N., Non-abelian cohomology and rational points, Prépublication I.H.E.S., 1999. 
  17. [17] HARRIS J., TSCHINKEL Y., Rational points on quartics, Preprint, 1998. Zbl0982.14013
  18. [18] HARTSHORNE R., Algebraic Geometry, Springer, New York, 1977. Zbl0367.14001MR57 #3116
  19. [19] KEUM J.H., Every algebraic Kummer surface is the K3-cover of an Enriques surface, Nagoya Math. J. 118 (1990) 99-110. Zbl0699.14047MR91f:14036
  20. [20] KNESER M., Starke Approximation in algebraischen Gruppen, I, J. Reine Angew. Math. 218 (1965) 190-203. Zbl0143.04701MR32 #2416
  21. [21] KOLLÁR J., Shafarevich Maps and Automorphic Forms, Princeton University Press, 1995. Zbl0871.14015MR96i:14016
  22. [22] LANG S., Abelian Varieties, Interscience Tracts in Pure and Appl. Math., Vol. 7, Interscience, New York, 1959. Zbl0098.13201MR21 #4959
  23. [23] LANG S., Algebraic Number Theory, Springer, New York, 1986. Zbl0601.12001
  24. [24] LANG S., NÉRON A., Rational points of abelian varieties over function fields, Amer. J. Math. 81 (1959) 95-118. Zbl0099.16103MR21 #1311
  25. [25] MANIN YU.I., Le groupe de Brauer-Grothendieck en géométrie diophantienne, in : Actes du Congrès Intern. Math. (Nice 1970), Tome 1, Gauthiers-Villars, Paris, 1971, pp. 401-411. Zbl0239.14010
  26. [26] MATSUMURA H., Commutative Algebra, W. A. Benjamin Co., New York, 1980. Zbl0211.06501MR82i:13003
  27. [27] MILNE J.S., Étale Cohomology, Princeton University Press, Princeton, NJ, 1980. Zbl0433.14012MR81j:14002
  28. [28] MINCHEV KH.P., Strong approximation for varieties over algebraic number fields, Dokl. Akad. Nauk BSSR 33 (1) (1989) 5-8 (Russian). Zbl0693.14001MR90a:11065
  29. [29] MUMFORD D., Abelian Varieties, Tata Institute of Fundamental Research, Oxford University Press, Bombay, 1970. Zbl0223.14022MR44 #219
  30. [30] SARNAK P., WANG L., Some hypersurfaces in P4 and the Hasse principle, C. R. Acad. Sci. Paris 321 (1995) 319-322. Zbl0857.14013MR96j:14014
  31. [31] SERRE J.-P., Sur la topologie des variétés algébriques en caractéristique p, in : Symposium Internacional de Topologia Algebraica, Mexico, 1958, pp. 24-53. Zbl0098.13103MR20 #4559
  32. [32] SKOROBOGATOV A.N., Beyond the Manin obstruction, Invent. Math. 135 (1999) 399-424. Zbl0951.14013MR2000c:14022
  33. [33] WANG L., Brauer-Manin obstruction to weak approximation on abelian varieties, Israel J. Math. 94 (1996) 189-200. Zbl0870.14032MR97e:11069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.