Strichartz estimates for water waves

Thomas Alazard; Nicolas Burq; Claude Zuily

Annales scientifiques de l'École Normale Supérieure (2011)

  • Volume: 44, Issue: 5, page 855-903
  • ISSN: 0012-9593

Abstract

top
In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ( η = 0 , ψ = 0 )).

How to cite

top

Alazard, Thomas, Burq, Nicolas, and Zuily, Claude. "Strichartz estimates for water waves." Annales scientifiques de l'École Normale Supérieure 44.5 (2011): 855-903. <http://eudml.org/doc/272209>.

@article{Alazard2011,
abstract = {In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ($\eta =0, \psi = 0$)).},
author = {Alazard, Thomas, Burq, Nicolas, Zuily, Claude},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Euler equation; free boundary problems; water-waves; Cauchy theory; dispersive estimates},
language = {eng},
number = {5},
pages = {855-903},
publisher = {Société mathématique de France},
title = {Strichartz estimates for water waves},
url = {http://eudml.org/doc/272209},
volume = {44},
year = {2011},
}

TY - JOUR
AU - Alazard, Thomas
AU - Burq, Nicolas
AU - Zuily, Claude
TI - Strichartz estimates for water waves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 5
SP - 855
EP - 903
AB - In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ($\eta =0, \psi = 0$)).
LA - eng
KW - Euler equation; free boundary problems; water-waves; Cauchy theory; dispersive estimates
UR - http://eudml.org/doc/272209
ER -

References

top
  1. [1] T. Alazard, N. Burq & C. Zuily, On the Cauchy problem for water gravity waves, preprint, 2011. Zbl1308.35195
  2. [2] T. Alazard, N. Burq & C. Zuily, On the water-wave equations with surface tension, Duke Math. J.158 (2011), 413–499. Zbl1258.35043MR2805065
  3. [3] T. Alazard & G. Métivier, Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves, Comm. Partial Differential Equations34 (2009), 1632–1704. Zbl1207.35082MR2581986
  4. [4] S. Alinhac, Paracomposition et opérateurs paradifférentiels, Comm. Partial Differential Equations11 (1986), 87–121. Zbl0596.47023MR814548
  5. [5] S. Alinhac, Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations14 (1989), 173–230. Zbl0692.35063MR976971
  6. [6] D. M. Ambrose & N. Masmoudi, The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math.58 (2005), 1287–1315. Zbl1086.76004MR2162781
  7. [7] H. Bahouri & J.-Y. Chemin, Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math.121 (1999), 1337–1377. Zbl0952.35073MR1719798
  8. [8] M. S. Berger, Nonlinearity and functional analysis, Academic Press, 1977. Zbl0368.47001MR488101
  9. [9] J. Bergh & J. Löfström, Interpolation spaces. An introduction, Grundl. Math. Wiss. 223, Springer, 1976. Zbl0344.46071MR482275
  10. [10] K. Beyer & M. Günther, On the Cauchy problem for a capillary drop. I. Irrotational motion, Math. Methods Appl. Sci. 21 (1998), 1149–1183. Zbl0916.35141MR1637554
  11. [11] M. Blair, Strichartz estimates for wave equations with coefficients of Sobolev regularity, Comm. Partial Differential Equations31 (2006), 649–688. Zbl1098.35036MR2233036
  12. [12] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup.14 (1981), 209–246. Zbl0495.35024MR631751
  13. [13] N. Burq, P. Gérard & N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math.126 (2004), 569–605. Zbl1067.58027MR2058384
  14. [14] N. Burq & F. Planchon, On well-posedness for the Benjamin-Ono equation, Math. Ann.340 (2008), 497–542. Zbl1148.35074MR2357995
  15. [15] J.-Y. Chemin, Fluides parfaits incompressibles, Astérisque 230 (1995). Zbl0829.76003MR1340046
  16. [16] H. Christianson, V. M. Hur & G. Staffilani, Strichartz estimates for the water-wave problem with surface tension, Comm. Partial Differential Equations35 (2010), 2195–2252. Zbl1280.35107MR2763354
  17. [17] D. Coutand & S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc.20 (2007), 829–930. Zbl1123.35038MR2291920
  18. [18] P. Germain, N. Masmoudi & J. Shatah, Global solutions for the gravity water waves equation in dimension 3, C. R. Math. Acad. Sci. Paris347 (2009), 897–902. Zbl1177.35168MR2542891
  19. [19] T. Iguchi, A long wave approximation for capillary-gravity waves and an effect of the bottom, Comm. Partial Differential Equations32 (2007), 37–85. Zbl1136.35081MR2304142
  20. [20] H. Koch & D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math.58 (2005), 217–284. Zbl1078.35143MR2094851
  21. [21] G. Métivier, Para-differential calculus and applications to the Cauchy problem for nonlinear systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series 5, Edizioni della Normale, Pisa, 2008. Zbl1156.35002MR2418072
  22. [22] M. Ming & Z. Zhang, Well-posedness of the water-wave problem with surface tension, J. Math. Pures Appl.92 (2009), 429–455. Zbl1190.35186MR2558419
  23. [23] F. Rousset & N. Tzvetkov, On the transverse instability of one dimensional capillary-gravity waves, Discrete Contin. Dyn. Syst. Ser. B13 (2010), 859–872. Zbl1197.35333MR2601344
  24. [24] B. Schweizer, On the three-dimensional Euler equations with a free boundary subject to surface tension, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (2005), 753–781. Zbl1148.35071MR2172858
  25. [25] J. Shatah & C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math.61 (2008), 698–744. Zbl1174.76001MR2388661
  26. [26] H. F. Smith, A parametrix construction for wave equations with C 1 , 1 coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998), 797–835. Zbl0974.35068MR1644105
  27. [27] G. Staffilani & D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations27 (2002), 1337–1372. Zbl1010.35015MR1924470
  28. [28] D. Tataru, Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math.122 (2000), 349–376. Zbl0959.35125MR1749052
  29. [29] D. Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II, Amer. J. Math. 123 (2001), 385–423. Zbl0988.35037MR1833146
  30. [30] S. Wu, Almost global wellposedness of the 2-D full water wave problem, Invent. Math.177 (2009), 45–135. Zbl1181.35205MR2507638
  31. [31] S. Wu, Global well-posedness of the 3D full water wave problem, preprint arXiv:0910.2473. Zbl1221.35304

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.