Strichartz estimates for water waves

Thomas Alazard; Nicolas Burq; Claude Zuily

Annales scientifiques de l'École Normale Supérieure (2011)

  • Volume: 44, Issue: 5, page 855-903
  • ISSN: 0012-9593

Abstract

top
In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ( η = 0 , ψ = 0 )).

How to cite

top

Alazard, Thomas, Burq, Nicolas, and Zuily, Claude. "Strichartz estimates for water waves." Annales scientifiques de l'École Normale Supérieure 44.5 (2011): 855-903. <http://eudml.org/doc/272209>.

@article{Alazard2011,
abstract = {In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ($\eta =0, \psi = 0$)).},
author = {Alazard, Thomas, Burq, Nicolas, Zuily, Claude},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Euler equation; free boundary problems; water-waves; Cauchy theory; dispersive estimates},
language = {eng},
number = {5},
pages = {855-903},
publisher = {Société mathématique de France},
title = {Strichartz estimates for water waves},
url = {http://eudml.org/doc/272209},
volume = {44},
year = {2011},
}

TY - JOUR
AU - Alazard, Thomas
AU - Burq, Nicolas
AU - Zuily, Claude
TI - Strichartz estimates for water waves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 5
SP - 855
EP - 903
AB - In this paper we investigate the dispersive properties of the solutions of the two dimensional water-waves system with surface tension. First we prove Strichartz type estimates with loss of derivatives at the same low level of regularity we were able to construct the solutions in [3]. On the other hand, for smoother initial data, we prove that the solutions enjoy the optimal Strichartz estimates (i.e, without loss of regularity compared to the system linearized at ($\eta =0, \psi = 0$)).
LA - eng
KW - Euler equation; free boundary problems; water-waves; Cauchy theory; dispersive estimates
UR - http://eudml.org/doc/272209
ER -

References

top
  1. [1] T. Alazard, N. Burq & C. Zuily, On the Cauchy problem for water gravity waves, preprint, 2011. Zbl1308.35195
  2. [2] T. Alazard, N. Burq & C. Zuily, On the water-wave equations with surface tension, Duke Math. J.158 (2011), 413–499. Zbl1258.35043MR2805065
  3. [3] T. Alazard & G. Métivier, Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves, Comm. Partial Differential Equations34 (2009), 1632–1704. Zbl1207.35082MR2581986
  4. [4] S. Alinhac, Paracomposition et opérateurs paradifférentiels, Comm. Partial Differential Equations11 (1986), 87–121. Zbl0596.47023MR814548
  5. [5] S. Alinhac, Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations14 (1989), 173–230. Zbl0692.35063MR976971
  6. [6] D. M. Ambrose & N. Masmoudi, The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math.58 (2005), 1287–1315. Zbl1086.76004MR2162781
  7. [7] H. Bahouri & J.-Y. Chemin, Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math.121 (1999), 1337–1377. Zbl0952.35073MR1719798
  8. [8] M. S. Berger, Nonlinearity and functional analysis, Academic Press, 1977. Zbl0368.47001MR488101
  9. [9] J. Bergh & J. Löfström, Interpolation spaces. An introduction, Grundl. Math. Wiss. 223, Springer, 1976. Zbl0344.46071MR482275
  10. [10] K. Beyer & M. Günther, On the Cauchy problem for a capillary drop. I. Irrotational motion, Math. Methods Appl. Sci. 21 (1998), 1149–1183. Zbl0916.35141MR1637554
  11. [11] M. Blair, Strichartz estimates for wave equations with coefficients of Sobolev regularity, Comm. Partial Differential Equations31 (2006), 649–688. Zbl1098.35036MR2233036
  12. [12] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup.14 (1981), 209–246. Zbl0495.35024MR631751
  13. [13] N. Burq, P. Gérard & N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math.126 (2004), 569–605. Zbl1067.58027MR2058384
  14. [14] N. Burq & F. Planchon, On well-posedness for the Benjamin-Ono equation, Math. Ann.340 (2008), 497–542. Zbl1148.35074MR2357995
  15. [15] J.-Y. Chemin, Fluides parfaits incompressibles, Astérisque 230 (1995). Zbl0829.76003MR1340046
  16. [16] H. Christianson, V. M. Hur & G. Staffilani, Strichartz estimates for the water-wave problem with surface tension, Comm. Partial Differential Equations35 (2010), 2195–2252. Zbl1280.35107MR2763354
  17. [17] D. Coutand & S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc.20 (2007), 829–930. Zbl1123.35038MR2291920
  18. [18] P. Germain, N. Masmoudi & J. Shatah, Global solutions for the gravity water waves equation in dimension 3, C. R. Math. Acad. Sci. Paris347 (2009), 897–902. Zbl1177.35168MR2542891
  19. [19] T. Iguchi, A long wave approximation for capillary-gravity waves and an effect of the bottom, Comm. Partial Differential Equations32 (2007), 37–85. Zbl1136.35081MR2304142
  20. [20] H. Koch & D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math.58 (2005), 217–284. Zbl1078.35143MR2094851
  21. [21] G. Métivier, Para-differential calculus and applications to the Cauchy problem for nonlinear systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series 5, Edizioni della Normale, Pisa, 2008. Zbl1156.35002MR2418072
  22. [22] M. Ming & Z. Zhang, Well-posedness of the water-wave problem with surface tension, J. Math. Pures Appl.92 (2009), 429–455. Zbl1190.35186MR2558419
  23. [23] F. Rousset & N. Tzvetkov, On the transverse instability of one dimensional capillary-gravity waves, Discrete Contin. Dyn. Syst. Ser. B13 (2010), 859–872. Zbl1197.35333MR2601344
  24. [24] B. Schweizer, On the three-dimensional Euler equations with a free boundary subject to surface tension, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (2005), 753–781. Zbl1148.35071MR2172858
  25. [25] J. Shatah & C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math.61 (2008), 698–744. Zbl1174.76001MR2388661
  26. [26] H. F. Smith, A parametrix construction for wave equations with C 1 , 1 coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998), 797–835. Zbl0974.35068MR1644105
  27. [27] G. Staffilani & D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations27 (2002), 1337–1372. Zbl1010.35015MR1924470
  28. [28] D. Tataru, Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math.122 (2000), 349–376. Zbl0959.35125MR1749052
  29. [29] D. Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II, Amer. J. Math. 123 (2001), 385–423. Zbl0988.35037MR1833146
  30. [30] S. Wu, Almost global wellposedness of the 2-D full water wave problem, Invent. Math.177 (2009), 45–135. Zbl1181.35205MR2507638
  31. [31] S. Wu, Global well-posedness of the 3D full water wave problem, preprint arXiv:0910.2473. Zbl1221.35304

NotesEmbed ?

top

You must be logged in to post comments.