On coverings of simple abelian varieties

Olivier Debarre

Bulletin de la Société Mathématique de France (2006)

  • Volume: 134, Issue: 2, page 253-260
  • ISSN: 0037-9484

Abstract

top
To any finite covering f : Y X of degree d between smooth complex projective manifolds, one associates a vector bundle E f of rank d - 1 on X whose total space contains Y . It is known that E f is ample when X is a projective space ([Lazarsfeld 1980]), a Grassmannian ([Manivel 1997]), or a Lagrangian Grassmannian ([Kim Maniel 1999]). We show an analogous result when X is a simple abelian variety and f does not factor through any nontrivial isogeny X ' X . This result is obtained by showing that E f is M -regular in the sense of Pareschi-Popa, and that any M -regular sheaf is ample.

How to cite

top

Debarre, Olivier. "On coverings of simple abelian varieties." Bulletin de la Société Mathématique de France 134.2 (2006): 253-260. <http://eudml.org/doc/272380>.

@article{Debarre2006,
abstract = {To any finite covering $f:Y\rightarrow X$ of degree $d$ between smooth complex projective manifolds, one associates a vector bundle $E_f$ of rank $d-1$ on $X$ whose total space contains $Y$. It is known that $E_f$ is ample when $X$ is a projective space ([Lazarsfeld 1980]), a Grassmannian ([Manivel 1997]), or a Lagrangian Grassmannian ([Kim Maniel 1999]). We show an analogous result when $X$ is a simple abelian variety and $f$ does not factor through any nontrivial isogeny $X^\{\prime \}\rightarrow X$. This result is obtained by showing that $E_f$ is $M$-regular in the sense of Pareschi-Popa, and that any $M$-regular sheaf is ample.},
author = {Debarre, Olivier},
journal = {Bulletin de la Société Mathématique de France},
keywords = {abelian variety; vector bundle; ample sheaf; $M$-regular sheaf; continuously generated sheaf; Barth-Lefschetz theorem; Mukai transform},
language = {eng},
number = {2},
pages = {253-260},
publisher = {Société mathématique de France},
title = {On coverings of simple abelian varieties},
url = {http://eudml.org/doc/272380},
volume = {134},
year = {2006},
}

TY - JOUR
AU - Debarre, Olivier
TI - On coverings of simple abelian varieties
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 2
SP - 253
EP - 260
AB - To any finite covering $f:Y\rightarrow X$ of degree $d$ between smooth complex projective manifolds, one associates a vector bundle $E_f$ of rank $d-1$ on $X$ whose total space contains $Y$. It is known that $E_f$ is ample when $X$ is a projective space ([Lazarsfeld 1980]), a Grassmannian ([Manivel 1997]), or a Lagrangian Grassmannian ([Kim Maniel 1999]). We show an analogous result when $X$ is a simple abelian variety and $f$ does not factor through any nontrivial isogeny $X^{\prime }\rightarrow X$. This result is obtained by showing that $E_f$ is $M$-regular in the sense of Pareschi-Popa, and that any $M$-regular sheaf is ample.
LA - eng
KW - abelian variety; vector bundle; ample sheaf; $M$-regular sheaf; continuously generated sheaf; Barth-Lefschetz theorem; Mukai transform
UR - http://eudml.org/doc/272380
ER -

References

top
  1. [1] O. Debarre – « Théorèmes de connexité et variétés abéliennes », Amer. J. Math.117 (1995), p. 787–805. Zbl0882.14014MR1333945
  2. [2] —, « Tores et variétés abéliennes complexes », Cours spécialisés, vol. 6, Société Math. France, Paris ; EDP Sciences, Les Ulis, 1999. Zbl0964.14037
  3. [3] L. Ein & R. Lazarsfeld – « Singularities of theta divisors and the birational geometry of irregular varieties », J. Amer. Math. Soc.10 (1997), p. 243–258. Zbl0901.14028MR1396893
  4. [4] M. Green & R. Lazarsfeld – « Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville », Invent. Math.90 (1987), p. 389–407. Zbl0659.14007MR910207
  5. [5] —, « Higher obstructions to deforming cohomology groups of line bundles », J. Amer. Math. Soc.4 (1991), p. 87–103. Zbl0735.14004MR1076513
  6. [6] J.-M. Hwang, S. Kebekus & T. Peternell – « Holomorphic maps onto varieties of non-negative Kodaira dimension », J. Algebraic Geom.15 (2006), p. 551–561. Zbl1112.14014MR2219848
  7. [7] M. Kim & L. Manivel – « On branched coverings of some homogeneous spaces », Topology38 (1999), p. 1141–1160. Zbl0935.14008MR1688418
  8. [8] K. Kubota – « Ample sheaves », J. Fac. Sci. Univ. Tokyo Sect. I A Math.17 (1970), p. 421–430. Zbl0212.26102MR292849
  9. [9] R. Lazarsfeld – « A Barth-type theorem for branched coverings of projective space », Math. Ann.249 (1980), p. 153–162. Zbl0434.32013MR578722
  10. [10] —, « Positivity in algebraic geometry II », Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 49, Springer-Verlag, Heidelberg, 2004. Zbl0633.14016MR2095472
  11. [11] L. Manivel – « Vanishing theorems for ample vector bundles », Invent. Math.127 (1997), p. 401–416. Zbl0906.14011MR1427625
  12. [12] S. Mukai – « Duality between D ( X ) and D ( X ^ ) with its application to Picard sheaves », Nagoya Math. J.81 (1981), p. 153–175. Zbl0417.14036MR607081
  13. [13] G. Pareschi & M. Popa – « Regularity on abelian varieties I », J. Amer. Math. Soc.16 (2003), p. 285–302. Zbl1022.14012MR1949161
  14. [14] T. Peternell & A. Sommese – « Ample Vector Bundles and Branched Coverings, II », The Fano Conference (A. Collino, A. Conte & M. Marchiso, éds.), Univ. Torino, 2004, p. 625–645. Zbl1071.14018MR2112595
  15. [15] C. Simpson – « Subspaces of moduli spaces of rank one local systems », Ann. Sci. École Norm. Sup.26 (1993), p. 361–401. Zbl0798.14005MR1222278

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.