Cascade of phases in turbulent flows

Christophe Cheverry

Bulletin de la Société Mathématique de France (2006)

  • Volume: 134, Issue: 1, page 33-82
  • ISSN: 0037-9484

Abstract

top
This article is devoted to incompressible Euler equations (or to Navier-Stokes equations in the vanishing viscosity limit). It describes the propagation of quasi-singularities. The underlying phenomena are consistent with the notion of a cascade of energy.

How to cite

top

Cheverry, Christophe. "Cascade of phases in turbulent flows." Bulletin de la Société Mathématique de France 134.1 (2006): 33-82. <http://eudml.org/doc/272381>.

@article{Cheverry2006,
abstract = {This article is devoted to incompressible Euler equations (or to Navier-Stokes equations in the vanishing viscosity limit). It describes the propagation of quasi-singularities. The underlying phenomena are consistent with the notion of a cascade of energy.},
author = {Cheverry, Christophe},
journal = {Bulletin de la Société Mathématique de France},
keywords = {fluid mechanics; Euler and Navier-Stokes equations; asymptotic expansions; nonlinear geometric optics; propagation of singularities; closure problems; turbulence},
language = {eng},
number = {1},
pages = {33-82},
publisher = {Société mathématique de France},
title = {Cascade of phases in turbulent flows},
url = {http://eudml.org/doc/272381},
volume = {134},
year = {2006},
}

TY - JOUR
AU - Cheverry, Christophe
TI - Cascade of phases in turbulent flows
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 1
SP - 33
EP - 82
AB - This article is devoted to incompressible Euler equations (or to Navier-Stokes equations in the vanishing viscosity limit). It describes the propagation of quasi-singularities. The underlying phenomena are consistent with the notion of a cascade of energy.
LA - eng
KW - fluid mechanics; Euler and Navier-Stokes equations; asymptotic expansions; nonlinear geometric optics; propagation of singularities; closure problems; turbulence
UR - http://eudml.org/doc/272381
ER -

References

top
  1. [1] C. Bardos – « What use for the mathematical theory of the Navier-Stokes equations », Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2001, p. 1–25. Zbl0992.35069MR1865047
  2. [2] J. Beale, T. Kato & A. Majda – « Remarks on the breakdown of smooth solutions for the 3D Euler equations », (1994), p. 61–66. Zbl0573.76029MR763762
  3. [3] A. Bertozzi & A. Majda – Vorticity and Incompressible Flow, Cambridge University Press, 2002. Zbl0983.76001MR1867882
  4. [4] T. Chacon Rebollo – « Oscillations due to the transport of microstructures », SIAM J. Appl. Math. 48 (1988). Zbl0656.76054MR960475
  5. [5] J.-Y. Chemin – Perfect Incompressible Fluids, Oxford Lecture Series in Math. and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998, translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. Zbl0927.76002MR1688875
  6. [6] J.-Y. Chemin, B. Desjardins, I. Gallagher & E. Grenier – « Fluids with anisotropic viscosity », Math. Modelling Num. Anal.34 (2000), p. 315–335. Zbl0954.76012MR1765662
  7. [7] C. Cheverry – « Propagation of oscillations in real vanishing viscosity limit », 247 (2004), p. 655–695. Zbl1079.35060MR2062647
  8. [8] C. Cheverry, O. Guès & G. Métivier – « Oscillations fortes sur un champ linéairement dégénéré », 36 (2003), p. 691–745. Zbl1091.35039MR2032985
  9. [9] —, « Large amplitude high frequency waves for quasilinear hyperbolic systems », Advances in Differential Equations (to appear). Zbl1107.35079MR2100397
  10. [10] P. Constantin & C. Fefferman – « Direction of vorticity and the problem of global regularity for the Navier-Stokes equations », Indiana Univ. Math. J.42 (1993), p. 775–789. Zbl0837.35113MR1254117
  11. [11] A. Corli & O. Guès – « Stratified solutions for systems of conservation laws », 353 (2001), p. 2459–2486. Zbl0974.35073MR1814078
  12. [12] R.-J. DiPerna & A.-J. Majda – « Oscillations and concentrations in weak solutions of the incompressible fluid equations », 108 (1987), p. 667–689. Zbl0626.35059MR877643
  13. [13] J. Duchon & R. Robert – « Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations », Nonlinearity13 (2000), p. 249–255. Zbl1009.35062MR1734632
  14. [14] W. E – « Homogenization of linear and non linear transport equations », Comm. Pure Appl. Math. 45 (1992), p. 301–326. Zbl0794.35014MR1151269
  15. [15] —, « Propagation of oscillations in the solutions of 1D compressible fluid equations », 17 (1992), p. 347–370. Zbl0760.35007MR1163429
  16. [16] C. Foias, P.-P. Manley, R. Rosa & R. Temam – « Cascade of energy in turbulent flows », 332 (2001), p. 509–514. Zbl0986.35089MR1834060
  17. [17] S. Friedlandler, W. Strauss & M. Vishik – « Nonlinear instability in an ideal fluid », Ann. Inst. H. Poincaré Anal. Non Linéaire14 (1997), p. 187–209. Zbl0874.76026MR1441392
  18. [18] P. Gérard – « Microlocal defect measures », 16 (1991), p. 1761–1794. Zbl0770.35001MR1135919
  19. [19] E. Grenier – « On the nonlinear instability of Euler and Prandtl equations », 53 (2000), p. 1067–1091. Zbl1048.35081MR1761409
  20. [20] O. Guès – « Ondes multidimensionnelles ε -stratifiées et oscillations », 68 (1992), p. 401–446. Zbl0837.35086MR1194948
  21. [21] —, « Développement asymptotique de solutions exactes de systèmes hyperboliques quasilinéaires », Asymp. Anal.6 (1993), p. 241–269. Zbl0780.35017MR1201195
  22. [22] J.-L. Joly, G. Métivier & J. Rauch – « Transparent non linear geometric optics and Maxwell-Bloch equations », 166 (2000), p. 175–250. Zbl1170.78311MR1779260
  23. [23] D. Lannes – « Secular growth for symmetric hyperbolic systems », 90 (2003), p. 466–503. Zbl1052.35119MR1970038
  24. [24] M. Lesieur – Turbulence in Fluids, Fluid Mechanics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1997. Zbl0876.76002MR1447438
  25. [25] P.-L. Lions – Mathematical Topics in Fluid Mechanics, Vol.1, Incompressible Models, Oxford Science Publications. Zbl0866.76002MR1422251
  26. [26] D. Mclaughlin, G. Papanicolaou & O. Pironneau – « Convection of microstructure and related problems », SIAM J. Appl. Math. 45 (1985). Zbl0622.76062MR804006
  27. [27] S. Schochet – « Fast singular limits of hyperbolic PDEs », 114 (1994), p. 476–512. Zbl0838.35071MR1303036
  28. [28] D. Serre – « Oscillations nonlinéaires de haute fréquence, dim 2 », Nonlinear Variational Problems and Partial Differential Equations (A. Marino & M. Murthy, éds.), Pitman Res. Notes in Math., vol. 320, Longman, London, 1995, p. 245–294. Zbl0843.35054MR1330015
  29. [29] T. Sideris – « Formation of singularities in compressible fluids », Commun. Math. Phys.101 (1985), p. 475–485. Zbl0606.76088MR815196

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.