Equidistribution towards the Green current

Vincent Guedj

Bulletin de la Société Mathématique de France (2003)

  • Volume: 131, Issue: 3, page 359-372
  • ISSN: 0037-9484

Abstract

top
Let f : k k be a dominating rational mapping of first algebraic degree λ 2 . If S is a positive closed current of bidegree ( 1 , 1 ) on k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks λ - n ( f n ) * S converge to the Green current T f . For some families of mappings, we get finer convergence results which allow us to characterize all f * -invariant currents.

How to cite

top

Guedj, Vincent. "Equidistribution towards the Green current." Bulletin de la Société Mathématique de France 131.3 (2003): 359-372. <http://eudml.org/doc/272445>.

@article{Guedj2003,
abstract = {Let $f:\mathbb \{P\}^k \rightarrow \mathbb \{P\}^k$ be a dominating rational mapping of first algebraic degree $\lambda \ge 2$. If $S$ is a positive closed current of bidegree $(1,1)$ on $\mathbb \{P\}^k$ with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks $\lambda ^\{-n\}(f^n)^*S$ converge to the Green current $T_\{\hspace\{-0.55542pt\}f\}$. For some families of mappings, we get finer convergence results which allow us to characterize all $f^*$-invariant currents.},
author = {Guedj, Vincent},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Green current; holomorphic dynamics; volume estimates},
language = {eng},
number = {3},
pages = {359-372},
publisher = {Société mathématique de France},
title = {Equidistribution towards the Green current},
url = {http://eudml.org/doc/272445},
volume = {131},
year = {2003},
}

TY - JOUR
AU - Guedj, Vincent
TI - Equidistribution towards the Green current
JO - Bulletin de la Société Mathématique de France
PY - 2003
PB - Société mathématique de France
VL - 131
IS - 3
SP - 359
EP - 372
AB - Let $f:\mathbb {P}^k \rightarrow \mathbb {P}^k$ be a dominating rational mapping of first algebraic degree $\lambda \ge 2$. If $S$ is a positive closed current of bidegree $(1,1)$ on $\mathbb {P}^k$ with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks $\lambda ^{-n}(f^n)^*S$ converge to the Green current $T_{\hspace{-0.55542pt}f}$. For some families of mappings, we get finer convergence results which allow us to characterize all $f^*$-invariant currents.
LA - eng
KW - Green current; holomorphic dynamics; volume estimates
UR - http://eudml.org/doc/272445
ER -

References

top
  1. [1] E. Bedford & J. Smillie – « Polynomial diffeomorphisms of 2 : currents, equilibrium measure and hyperbolicity », Invent. Math. 103 (1991), no. 1, p. 69–99. Zbl0721.58037MR1079840
  2. [2] F. Berteloot & V. Mayer – Rudiments de dynamique holomorphe, Cours spécialisés, vol. 7, Société Mathématique de France, Paris, 2001. Zbl1051.37019MR1973050
  3. [3] H. Brolin – « Invariant sets under iteration of rational functions », Arkiv. Math.6 (1965), p. 103–144. Zbl0127.03401MR194595
  4. [4] C. Favre – « Note on pull-back and Lelong number of currents », Bull. Soc. Math. France 127 (1999), no. 3, p. 445–458. Zbl0937.32005MR1724404
  5. [5] —, « Multiplicity of holomorphic functions », Math. Ann.316 (2000), p. 355–378. Zbl0948.32020MR1741274
  6. [6] C. Favre & V. Guedj – « Dynamique des applications rationnelles des espaces multiprojectifs », Indiana Univ. Math. J.50 (2001), p. 881–934. Zbl1046.37026MR1871393
  7. [7] C. Favre & M. Jonsson – « Brolin Theorem for curves in two complex dimensions », Preprint, 2001. Zbl1113.32005MR2032940
  8. [8] J.-E. Fornaess & N. Sibony – « Complex Hénon mappings in 2 and Fatou-Bieberbach domains », Duke Math. J. 65 (1992), no. 2, p. 345–380. Zbl0761.32015MR1150591
  9. [9] —, « Complex dynamics in higher dimension II », Modern methods in complex analysis (Princeton, NJ, 1992), Ann. of Math. Stud., vol. 137, Princeton Univ. Press, Princeton, NJ, 1995, p. 135–182. Zbl0852.00026MR1369137
  10. [10] P. Griffiths & J. Harris – Principles of algebraic geometry, Wiley, New York, 1978. Zbl0836.14001MR507725
  11. [11] V. Guedj – « Dynamics of polynomial mappings of 2 », Amer. J. Math.124 (2002), p. 75–106. Zbl1198.32007MR1879000
  12. [12] V. Guedj & N. Sibony – « Dynamics of polynomial automorphisms of k », Arkiv. Math.40 (2002), p. 207–243. Zbl1034.37025MR1948064
  13. [13] L. Hörmander – Notions of convexity, Progress in Math., vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. Zbl0835.32001MR1301332
  14. [14] J. Hubbard & P. Papadopol – « Superattractive fixed points in n », Indiana Univ. Math. J.43 (1994), p. 321–365. Zbl0858.32023MR1275463
  15. [15] C. Kiselman – « Ensembles de sous-niveau et images inverses des fonctions plurisousharmoniques », Bull. Sci. Math. 124 (2000), no. 1, p. 75–92. Zbl0955.32025MR1742495
  16. [16] M. Lyubich – « Entropy properties of rational endomorphisms of the Riemann sphere », Ergodic Theory & Dyn. Syst. 3 (1983), p. 351–385. Zbl0537.58035MR741393
  17. [17] A. Russakovskii & B. Shiffman – « Value distribution for sequences of rational mappings and complex dynamics », Indiana Univ. Math. J.46 (1997), p. 897–932. Zbl0901.58023MR1488341
  18. [18] N. Sibony – « Dynamique des applications rationnelles de k », Dynamique et géométrie complexes, Panoramas et Synthèses, Société Mathématique de France, Paris, 1999, p. 97–185. Zbl1020.37026MR1760844
  19. [19] A. Zeriahi – « A criterion of algebraicity for Lelong classes and analytic sets », Acta Math. 184 (2000), no. 1, p. 113–143. Zbl1016.32015MR1756571

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.