Equidistribution towards the Green current
Bulletin de la Société Mathématique de France (2003)
- Volume: 131, Issue: 3, page 359-372
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topGuedj, Vincent. "Equidistribution towards the Green current." Bulletin de la Société Mathématique de France 131.3 (2003): 359-372. <http://eudml.org/doc/272445>.
@article{Guedj2003,
abstract = {Let $f:\mathbb \{P\}^k \rightarrow \mathbb \{P\}^k$ be a dominating rational mapping of first algebraic degree $\lambda \ge 2$. If $S$ is a positive closed current of bidegree $(1,1)$ on $\mathbb \{P\}^k$ with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks $\lambda ^\{-n\}(f^n)^*S$ converge to the Green current $T_\{\hspace\{-0.55542pt\}f\}$. For some families of mappings, we get finer convergence results which allow us to characterize all $f^*$-invariant currents.},
author = {Guedj, Vincent},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Green current; holomorphic dynamics; volume estimates},
language = {eng},
number = {3},
pages = {359-372},
publisher = {Société mathématique de France},
title = {Equidistribution towards the Green current},
url = {http://eudml.org/doc/272445},
volume = {131},
year = {2003},
}
TY - JOUR
AU - Guedj, Vincent
TI - Equidistribution towards the Green current
JO - Bulletin de la Société Mathématique de France
PY - 2003
PB - Société mathématique de France
VL - 131
IS - 3
SP - 359
EP - 372
AB - Let $f:\mathbb {P}^k \rightarrow \mathbb {P}^k$ be a dominating rational mapping of first algebraic degree $\lambda \ge 2$. If $S$ is a positive closed current of bidegree $(1,1)$ on $\mathbb {P}^k$ with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks $\lambda ^{-n}(f^n)^*S$ converge to the Green current $T_{\hspace{-0.55542pt}f}$. For some families of mappings, we get finer convergence results which allow us to characterize all $f^*$-invariant currents.
LA - eng
KW - Green current; holomorphic dynamics; volume estimates
UR - http://eudml.org/doc/272445
ER -
References
top- [1] E. Bedford & J. Smillie – « Polynomial diffeomorphisms of : currents, equilibrium measure and hyperbolicity », Invent. Math. 103 (1991), no. 1, p. 69–99. Zbl0721.58037MR1079840
- [2] F. Berteloot & V. Mayer – Rudiments de dynamique holomorphe, Cours spécialisés, vol. 7, Société Mathématique de France, Paris, 2001. Zbl1051.37019MR1973050
- [3] H. Brolin – « Invariant sets under iteration of rational functions », Arkiv. Math.6 (1965), p. 103–144. Zbl0127.03401MR194595
- [4] C. Favre – « Note on pull-back and Lelong number of currents », Bull. Soc. Math. France 127 (1999), no. 3, p. 445–458. Zbl0937.32005MR1724404
- [5] —, « Multiplicity of holomorphic functions », Math. Ann.316 (2000), p. 355–378. Zbl0948.32020MR1741274
- [6] C. Favre & V. Guedj – « Dynamique des applications rationnelles des espaces multiprojectifs », Indiana Univ. Math. J.50 (2001), p. 881–934. Zbl1046.37026MR1871393
- [7] C. Favre & M. Jonsson – « Brolin Theorem for curves in two complex dimensions », Preprint, 2001. Zbl1113.32005MR2032940
- [8] J.-E. Fornaess & N. Sibony – « Complex Hénon mappings in and Fatou-Bieberbach domains », Duke Math. J. 65 (1992), no. 2, p. 345–380. Zbl0761.32015MR1150591
- [9] —, « Complex dynamics in higher dimension II », Modern methods in complex analysis (Princeton, NJ, 1992), Ann. of Math. Stud., vol. 137, Princeton Univ. Press, Princeton, NJ, 1995, p. 135–182. Zbl0852.00026MR1369137
- [10] P. Griffiths & J. Harris – Principles of algebraic geometry, Wiley, New York, 1978. Zbl0836.14001MR507725
- [11] V. Guedj – « Dynamics of polynomial mappings of », Amer. J. Math.124 (2002), p. 75–106. Zbl1198.32007MR1879000
- [12] V. Guedj & N. Sibony – « Dynamics of polynomial automorphisms of », Arkiv. Math.40 (2002), p. 207–243. Zbl1034.37025MR1948064
- [13] L. Hörmander – Notions of convexity, Progress in Math., vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. Zbl0835.32001MR1301332
- [14] J. Hubbard & P. Papadopol – « Superattractive fixed points in », Indiana Univ. Math. J.43 (1994), p. 321–365. Zbl0858.32023MR1275463
- [15] C. Kiselman – « Ensembles de sous-niveau et images inverses des fonctions plurisousharmoniques », Bull. Sci. Math. 124 (2000), no. 1, p. 75–92. Zbl0955.32025MR1742495
- [16] M. Lyubich – « Entropy properties of rational endomorphisms of the Riemann sphere », Ergodic Theory & Dyn. Syst. 3 (1983), p. 351–385. Zbl0537.58035MR741393
- [17] A. Russakovskii & B. Shiffman – « Value distribution for sequences of rational mappings and complex dynamics », Indiana Univ. Math. J.46 (1997), p. 897–932. Zbl0901.58023MR1488341
- [18] N. Sibony – « Dynamique des applications rationnelles de », Dynamique et géométrie complexes, Panoramas et Synthèses, Société Mathématique de France, Paris, 1999, p. 97–185. Zbl1020.37026MR1760844
- [19] A. Zeriahi – « A criterion of algebraicity for Lelong classes and analytic sets », Acta Math. 184 (2000), no. 1, p. 113–143. Zbl1016.32015MR1756571
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.