Equidistribution of preimages over nonarchimedean fields for maps of good reduction
- [1] Department of Mathematics, University of Michigan, 530 Church St., Ann Arbor, MI 48109, USA
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 4, page 1737-1779
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGignac, William. "Equidistribution of preimages over nonarchimedean fields for maps of good reduction." Annales de l’institut Fourier 64.4 (2014): 1737-1779. <http://eudml.org/doc/275433>.
@article{Gignac2014,
abstract = {In this article we prove an analogue of the equidistribution of preimages theorem from complex dynamics for maps of good reduction over nonarchimedean fields. While in general our result is only a partial analogue of the complex equidistribution theorem, for most maps of good reduction it is a complete analogue. In the particular case when the nonarchimedean field in question is equipped with the trivial absolute value, we are able to supply a strengthening of the theorem, namely that the preimages of any tame valuation equidistribute to a canonical measure.},
affiliation = {Department of Mathematics, University of Michigan, 530 Church St., Ann Arbor, MI 48109, USA},
author = {Gignac, William},
journal = {Annales de l’institut Fourier},
keywords = {equidistribution; nonarchimedean dynamics; Berkovich spaces; maps of good reduction; multiplicities; exceptional set; good reduction},
language = {eng},
number = {4},
pages = {1737-1779},
publisher = {Association des Annales de l’institut Fourier},
title = {Equidistribution of preimages over nonarchimedean fields for maps of good reduction},
url = {http://eudml.org/doc/275433},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Gignac, William
TI - Equidistribution of preimages over nonarchimedean fields for maps of good reduction
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 4
SP - 1737
EP - 1779
AB - In this article we prove an analogue of the equidistribution of preimages theorem from complex dynamics for maps of good reduction over nonarchimedean fields. While in general our result is only a partial analogue of the complex equidistribution theorem, for most maps of good reduction it is a complete analogue. In the particular case when the nonarchimedean field in question is equipped with the trivial absolute value, we are able to supply a strengthening of the theorem, namely that the preimages of any tame valuation equidistribute to a canonical measure.
LA - eng
KW - equidistribution; nonarchimedean dynamics; Berkovich spaces; maps of good reduction; multiplicities; exceptional set; good reduction
UR - http://eudml.org/doc/275433
ER -
References
top- Matthew H. Baker, Robert Rumely, Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier (Grenoble) 56 (2006), 625-688 Zbl1234.11082MR2244226
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 33 (1990), American Mathematical Society, Providence, RI Zbl0715.14013MR1070709
- Vladimir G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. (1993), 5-161 (1994) Zbl0804.32019MR1259429
- Nicolas Bourbaki, Commutative algebra. Chapters 1–7, (1998), Springer-Verlag, Berlin Zbl0673.00001MR1727221
- Jean-Yves Briend, Julien Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de , Publ. Math. Inst. Hautes Études Sci. (2001), 145-159 Zbl1010.37004MR1863737
- Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144 (1965) Zbl0127.03401MR194595
- Antoine Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215-235 Zbl1112.14022MR2244803
- Tien-Cuong Dinh, Analytic multiplicative cocycles over holomorphic dynamical systems, Complex Var. Elliptic Equ. 54 (2009), 243-251 Zbl1161.37329MR2513537
- Tien-Cuong Dinh, Nessim Sibony, Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9) 82 (2003), 367-423 Zbl1033.37023MR1992375
- Tien-Cuong Dinh, Nessim Sibony, Equidistribution towards the Green current for holomorphic maps, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 307-336 Zbl1160.32029MR2468484
- Diophantine approximation and abelian varieties, 1566 (1993), EdixhovenB.B., Berlin MR1288998
- Lawrence Ein, Robert Lazarsfeld, Karen Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), 409-440 Zbl1033.14030MR1963690
- David Eisenbud, Commutative algebra, with a view toward algebraic geometry, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
- Xander Faber, Equidistribution of dynamically small subvarieties over the function field of a curve, Acta Arith. 137 (2009), 345-389 Zbl1234.37058MR2506588
- Najmuddin Fakhruddin, Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc. 18 (2003), 109-122 Zbl1053.14025MR1995861
- Charles Favre, Mattias Jonsson, Brolin’s theorem for curves in two complex dimensions, Ann. Inst. Fourier (Grenoble) 53 (2003), 1461-1501 Zbl1113.32005MR2032940
- Charles Favre, Mattias Jonsson, The valuative tree, 1853 (2004), Springer-Verlag, Berlin Zbl1064.14024MR2097722
- Charles Favre, Juan Rivera-Letelier, Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann. 335 (2006), 311-361 Zbl1175.11029MR2221116
- Charles Favre, Juan Rivera-Letelier, Théorie ergodique des fractions rationnelles sur un corps ultramétrique, Proc. Lond. Math. Soc. (3) 100 (2010), 116-154 Zbl1254.37064MR2578470
- John Erik Fornæss, Nessim Sibony, Complex dynamics in higher dimension. I, Astérisque (1994), 5, 201-231 Zbl0813.58030MR1285389
- John Erik Fornæss, Nessim Sibony, Complex dynamics in higher dimension. II, Modern methods in complex analysis (Princeton, NJ, 1992) 137 (1995), 135-182, Princeton Univ. Press, Princeton, NJ Zbl0847.58059MR1369137
- Alexandre Freire, Artur Lopes, Ricardo Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62 Zbl0568.58027MR736568
- William Gignac, Measures and dynamics on Noetherian spaces, (2012) Zbl1320.37003MR3261717
- Walter Gubler, Equidistribution over function fields, Manuscripta Math. 127 (2008), 485-510 Zbl1189.14030MR2457191
- Vincent Guedj, Equidistribution towards the Green current, Bull. Soc. Math. France 131 (2003), 359-372 Zbl1070.37026MR2017143
- Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
- Shuzo Izumi, A measure of integrity for local analytic algebras, Publ. Res. Inst. Math. Sci. 21 (1985), 719-735 Zbl0587.32016MR817161
- Mattias Jonsson, Dynamics on Berkovich spaces in low dimensions, (2012) Zbl06463429
- Mattias Jonsson, Mircea Mustaţǎ, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), 2145-2209 Zbl1272.14016MR3060755
- Monique Lejeune-Jalabert, Bernard Teissier, Normal cones and sheaves of relative jets, Compositio Math. 28 (1974), 305-331 Zbl0337.14013MR379897
- Mikhail Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351-385 Zbl0537.58035MR741393
- Mahdi Majidi-Zolbanin, Nikita Miasnikov, Lucien Szpiro, Entropy and flatness in local algebraic dynamics, Pub. Mat. 57 (2013), 509-544 Zbl1302.37059MR3114781
- Yûsuke Okuyama, Repelling periodic points and logarithmic equidistribution in non-archimedean dynamics, Acta Arith. 152 (2012), 267-277 Zbl1302.37069MR2885787
- Yûsuke Okuyama, Fekete configuration, quantitative equidistribution and wandering critical orbits in non-archimedean dynamics, Math. Z. 273 (2013), 811-837 Zbl1329.37085MR3030679
- Rodrigo Parra, The Jacobian cocycle and equidistribution towards the Green current, (2011)
- Jérôme Poineau, Les espaces de Berkovich sont angéliques, Bull. Soc. Math. Fr. 141 (2013), 267-297 Zbl1314.14046MR3081557
- Igor R. Shafarevich, Basic algebraic geometry. 1, (1994), Springer-Verlag, Berlin Zbl0797.14001MR1328833
- Nessim Sibony, Dynamique des applications rationnelles de , Dynamique et géométrie complexes (Lyon, 1997) 8 (1999), 97-185, Soc. Math. France, Paris Zbl1020.37026MR1760844
- Joseph Silverman, Moduli spaces and arithmetic dynamics, v. 30 (2012), American Mathematical Society, Providence, R.I. Zbl1247.37004MR2884382
- Lucien Szpiro, Emmanuel Ullmo, Shou-Wu Zhang, Équirépartition des petits points, Invent. Math. 127 (1997), 337-347 Zbl0991.11035MR1427622
- Jean-Claude Tougeron, Idéaux de fonctions différentiables, (1972), Springer-Verlag, Berlin Zbl0251.58001MR440598
- Tetsuo Ueda, Fatou sets in complex dynamics on projective spaces, J. Math. Soc. Japan 46 (1994), 545-555 Zbl0829.58025MR1276837
- Xinyi Yuan, Big line bundles over arithmetic varieties, Invent. Math. 173 (2008), 603-649 Zbl1146.14016MR2425137
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.