The H–1-norm of tubular neighbourhoods of curves
Yves van Gennip; Mark A. Peletier
ESAIM: Control, Optimisation and Calculus of Variations (2011)
- Volume: 17, Issue: 1, page 131-154
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] W. Allard, On the first variation of a varifold. Ann. Math.95 (1972) 417–491. Zbl0252.49028MR307015
- [2] G. Bellettini and L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional. Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004) 839–880. Zbl1110.49014MR2097034
- [3] G. Bellettini and L. Mugnai, A varifolds representation of the relaxed elastica functional. Journal of Convex Analysis14 (2007) 543–564. Zbl1127.49032MR2341303
- [4] T. D'Aprile, Behaviour of symmetric solutions of a nonlinear elliptic field equation in the semi-classical limit: Concentration around a circle. Electronic J. Differ. Equ.2000 (2000) 1–40. Zbl0954.35057
- [5] A. Doelman and H. van der Ploeg, Homoclinic stripe patterns. SIAM J. Appl. Dyn. Syst.1 (2002) 65–104. Zbl1004.35063MR1972974
- [6] I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications. Oxford University Press Inc., New York, USA (1995). Zbl0852.47030MR1373430
- [7] O. Gonzalez and J. Maddocks, Global curvature, thickness, and the ideal shape of knots. Proc. Natl. Acad. Sci. USA96 (1999) 4769–4773. Zbl1057.57500MR1692638
- [8] J. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J.35 (1986) 45–71. Zbl0561.53008MR825628
- [9] M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly73 (1966) 1–23. Zbl0139.05603MR201237
- [10] M.A. Peletier and M. Röger, Partial localization, lipid bilayers, and the elastica functional. Arch. Rational Mech. Anal.193 (2008) 475–537. Zbl1170.74034MR2525110
- [11] N. Sidorova and O. Wittich, Construction of surface measures for Brownian motion, in Trends in stochastic analysis: a Festschrift in honour of Heinrich von Weizsäcker, LMS Lecture Notes 353, Cambridge UP (2009) 123–158. Zbl1176.58020MR2562153
- [12] Y. van Gennip and M.A. Peletier, Copolymer-homopolymer blends: global energy minimisation and global energy bounds. Calc. Var. Part. Differ. Equ.33 (2008) 75–111. Zbl1191.49006MR2413102
- [13] Y. van Gennip and M.A. Peletier, Stability of monolayers and bilayers in a copolymer-homopolymer blend model. Interfaces Free Bound.11 (2009) 331–373. Zbl1179.93106MR2546603