Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization

Sergej Čelikovský

Kybernetika (2004)

  • Volume: 40, Issue: 6, page [649]-664
  • ISSN: 0023-5954

Abstract

top
This paper shows that a large class of chaotic systems, introduced in [S. Čelikovský and G. Chen: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM], as the hyperbolic-type generalized Lorenz system, can be systematically used to generate synchronized chaotic oscillations. While the generalized Lorenz system unifies the famous Lorenz system and Chen’s system [G. Chen and T. Ueta: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999)], the hyperbolic-type generalized Lorenz system is in some way complementary to it. Synchronization of two such systems is made through a scalar coupling signal based on nonlinear observer design using special change of coordinates to the so-called observer canonical form of the hyperbolic-type generalized Lorenz system. The properties of the suggested synchronization that make it attractive for the the secure encrypted communication application are discussed in detail. Theoretical results are supported by the computer simulations, showing viability of the suggested approach.

How to cite

top

Čelikovský, Sergej. "Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization." Kybernetika 40.6 (2004): [649]-664. <http://eudml.org/doc/33726>.

@article{Čelikovský2004,
abstract = {This paper shows that a large class of chaotic systems, introduced in [S. Čelikovský and G. Chen: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM], as the hyperbolic-type generalized Lorenz system, can be systematically used to generate synchronized chaotic oscillations. While the generalized Lorenz system unifies the famous Lorenz system and Chen’s system [G. Chen and T. Ueta: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999)], the hyperbolic-type generalized Lorenz system is in some way complementary to it. Synchronization of two such systems is made through a scalar coupling signal based on nonlinear observer design using special change of coordinates to the so-called observer canonical form of the hyperbolic-type generalized Lorenz system. The properties of the suggested synchronization that make it attractive for the the secure encrypted communication application are discussed in detail. Theoretical results are supported by the computer simulations, showing viability of the suggested approach.},
author = {Čelikovský, Sergej},
journal = {Kybernetika},
keywords = {nonlinear; chaotic; synchronization; observer; nonlinear system; chaotic system; synchronization; observer},
language = {eng},
number = {6},
pages = {[649]-664},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization},
url = {http://eudml.org/doc/33726},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Čelikovský, Sergej
TI - Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 6
SP - [649]
EP - 664
AB - This paper shows that a large class of chaotic systems, introduced in [S. Čelikovský and G. Chen: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM], as the hyperbolic-type generalized Lorenz system, can be systematically used to generate synchronized chaotic oscillations. While the generalized Lorenz system unifies the famous Lorenz system and Chen’s system [G. Chen and T. Ueta: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999)], the hyperbolic-type generalized Lorenz system is in some way complementary to it. Synchronization of two such systems is made through a scalar coupling signal based on nonlinear observer design using special change of coordinates to the so-called observer canonical form of the hyperbolic-type generalized Lorenz system. The properties of the suggested synchronization that make it attractive for the the secure encrypted communication application are discussed in detail. Theoretical results are supported by the computer simulations, showing viability of the suggested approach.
LA - eng
KW - nonlinear; chaotic; synchronization; observer; nonlinear system; chaotic system; synchronization; observer
UR - http://eudml.org/doc/33726
ER -

References

top
  1. Agiza H. N., Yassen M. T., 10.1016/S0375-9601(00)00777-5, Phys. Lett. A 278 (2000), 191–197 Zbl0972.37019MR1827067DOI10.1016/S0375-9601(00)00777-5
  2. Alvarez-Ramirez J., Puebla, H., Cervantes I., 10.1142/S0218127402005352, Internat. J. Bifur. Chaos 7 (2002), 1605–1618 DOI10.1142/S0218127402005352
  3. Blekman I. I., Fradkov A. L., Nijmeijer, H., Pogromsky A. Y., 10.1016/S0167-6911(97)00047-9, Systems Control Lett. 31 (1997), 299–305 (1997) MR1482331DOI10.1016/S0167-6911(97)00047-9
  4. Čelikovský S., Vaněček A., Bilinear systems and chaos, Kybernetika 30 (1994), 403–424 (1994) 
  5. Čelikovský S., Chen G., 10.1142/S0218127402005467, Internat. J. Bifur. Chaos 12 (2002), 1789–1812 Zbl1043.37023MR1927413DOI10.1142/S0218127402005467
  6. Čelikovský S., Chen G., Synchronization of a class of chaotic systems via a nonlinear observer approach, In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 3895–3900 
  7. Čelikovský S., Chen G., Hyperbolic-type generalized Lorenz system and its canonical form, In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM 
  8. Čelikovský S., Ruiz-Léon J. J., Sapiens A. J., Torres-Muñoz J. A., Output feedback problems for a class of nonlinear systems, Kybernetika 39 (2003), 389–414 MR2024522
  9. Chen G., Dong X., From Chaos to Order: Methodologies, Perspectives, and Applications, World Scientific, Singapore 1998 Zbl0908.93005MR1642791
  10. Chen G., Ueta T., 10.1142/S0218127499001024, Internat. J. Bifur. Chaos 9 (1999), 1465–1466 (1999) Zbl0962.37013MR1729683DOI10.1142/S0218127499001024
  11. Dachselt F., Schwartz W., 10.1109/TCSI.2001.972857, IEEE Trans. Circuits and Systems 48 (2001), 1498–1509 MR1873100DOI10.1109/TCSI.2001.972857
  12. Fradkov A. L., Nijmeijer, H., Pogromsky A. Yu., Adaptive observer based synhronization, In: Controlling Chaos and Bifurcations in Engineering Systems (G. Chen, ed.), CRC Press, Boca Raton 1999, pp. 417–435 (1999) MR1756071
  13. Grassi G., Mascolo S., 10.1002/(SICI)1097-007X(199911/12)27:6<543::AID-CTA81>3.0.CO;2-4, Internat. J. Circuit Theory Appl. 27 (1999), 543–553 (1999) Zbl0961.37029DOI10.1002/(SICI)1097-007X(199911/12)27:6<543::AID-CTA81>3.0.CO;2-4
  14. Itoh M., Chua L. O., 10.1142/S0218127402005704, Internat. J. Bifur. Chaos 12 (2002), 2069–2085 Zbl1046.94019MR1941272DOI10.1142/S0218127402005704
  15. Krener A. J., Nonlinear stabilizability and detectability, In: Systems and Networks: Mathematical Theory and Applications, Vol. I (U. Helmke, R. Mennicken, and J. Sauer, eds.), Akademie Verlag, Berlin 199x, pp. 231–250 (199x) MR1288114
  16. Krener A. J., Isidori A., Linearization by output injection and nonlinear observers, Systems Control Lett. 3 (1983), 47–52 (1983) Zbl0524.93030MR0713426
  17. Krener A. J., Respondek W., 10.1137/0323016, SIAM J. Control Optim. 23 (1985), 197–216 (1985) Zbl0569.93035MR0777456DOI10.1137/0323016
  18. Lian J., Liu P., 10.1109/81.883341, IEEE Trans. Circuits and Systems 47 (2000), 1418–1424 Zbl1011.94033MR1803664DOI10.1109/81.883341
  19. Lü J., Chen G., Cheng, D., Čelikovský S., 10.1142/S021812740200631X, Internat. J. Bifur. Chaos 12 (2002), 2917–2926 Zbl1043.37026MR1956411DOI10.1142/S021812740200631X
  20. Marino P., Tomei P., Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice–Hall, London 1991 Zbl0833.93003
  21. Nijmeijer H., Shaft A. J. van der, Nonlinear Dynamical Control Systems, Springer–Verlag, New York 1990 MR1047663
  22. Nijmeijer H., 10.1016/S0167-2789(01)00251-2, Phys. D 154 (2001), 219–228 Zbl0981.34053MR1841062DOI10.1016/S0167-2789(01)00251-2
  23. Pecora L., Carrol T., 10.1103/PhysRevLett.64.821, Phys. Rev. Lett. 64 (1990), 821–824 (1990) MR1038263DOI10.1103/PhysRevLett.64.821
  24. Pogromsky A., Santoboni, G., Nijmeijer H., 10.1016/S0167-2789(02)00654-1, Phys. D 172 (2002), 65–87 Zbl1008.37012MR1942999DOI10.1016/S0167-2789(02)00654-1
  25. Santoboni G., Pogromsky A. Y., Nijmeijer H., 10.1016/S0375-9601(01)00652-1, Phys. Lett. A 291 (2001), 265–273 Zbl0977.37047DOI10.1016/S0375-9601(01)00652-1
  26. Santoboni G., Pogromsky A. Y., Nijmeijer H., 10.1142/S0218127403006698, Internat. J. Bifur. Chaos 13 (2003), 453–458 MR1972160DOI10.1142/S0218127403006698
  27. Shilnikov A. L., Shilnikov L. P., Turaev D. V., 10.1142/S0218127493000933, Internat. J. Bifur. Chaos 3 (1993), 1123–1139 (1993) MR1257718DOI10.1142/S0218127493000933
  28. Solak E., Morgül, Ö., Ersoy U., 10.1016/S0375-9601(00)00808-2, Phys. Lett. A 279 (2001), 47–55 Zbl0972.37020DOI10.1016/S0375-9601(00)00808-2
  29. Ueta T., Chen G., 10.1142/S0218127400001183, Internat. J. Bifur. Chaos 10 (2000), 1917–1931 (1917) MR1787214DOI10.1142/S0218127400001183
  30. Vaněček A., Čelikovský S., Control Systems: From Linear Analysis to Synthesis of Chaos, Prentice–Hall, London 1996 Zbl0874.93006
  31. Wang X., Chen’s attractor – a new chaotic attractor (in Chinese), Control Theory Appl. 16 (1999), 779 (1999) MR1741142
  32. Wiggins S., Global Bifurcation and Chaos: Analytical Methods, Springer–Verlag, New York 1988 MR0956468
  33. Zhong G.-Q., Tang K. S., 10.1142/S0218127402005224, Internat. J. Bifur. Chaos 12 (2002), 1423–1427 DOI10.1142/S0218127402005224

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.