Displaying similar documents to “Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd”

Optimal convergence rates of mortar finite element methods for second-order elliptic problems

Faker Ben Belgacem, Padmanabhan Seshaiyer, Manil Suri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present an improved, near-optimal error estimate for a non-conforming finite element method, called the mortar method (M0). We also present a new mortaring technique, called the mortar method (MP), and derive , and error estimates for it, in the presence of quasiuniform and non-quasiuniform meshes. Our theoretical results, augmented by the computational evidence we present, show that like (M0), (MP) is also a viable mortaring technique for the method.

Anisotropic mesh refinement in polyhedral domains: error estimates with data in L2(Ω)

Thomas Apel, Ariel L. Lombardi, Max Winkler (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the ()- and ()-norms by using a new quasi-interpolation...

Minimising convex combinations of low eigenvalues

Mette Iversen, Dario Mazzoleni (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider the variational problem         inf{ () +  () + (1 −  − ) () | Ω open in ℝ, || ≤ 1}, for  ∈ [0, 1],  +  ≤ 1, where () is the th eigenvalue of the Dirichlet Laplacian acting in () and || is the Lebesgue measure of . We investigate for which values of every minimiser is connected.

A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations

Irene Kyza (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We prove error estimates of optimal order for linear Schrödinger-type equations in the ( )- and the ( )-norm. We discretize only in time by the Crank-Nicolson method. The direct use of the reconstruction technique, as it has been proposed by Akrivis in [ 75 (2006) 511–531], leads to upper bounds that are of optimal order in the ( )-norm, but of suboptimal order in the ( ...

Risk bounds for new M-estimation problems

Nabil Rachdi, Jean-Claude Fort, Thierry Klein (2013)

ESAIM: Probability and Statistics

Similarity:

In this paper, we consider a new framework where two types of data are available: experimental data supposed to be i.i.d from and outputs from a simulated reduced model. We develop a procedure for parameter estimation to characterize a feature of the phenomenon . We prove a risk bound qualifying the proposed procedure in terms of the number of experimental data , reduced model complexity...

An analysis of electrical impedance tomography with applications to Tikhonov regularization

Bangti Jin, Peter Maass (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper analyzes the continuum model/complete electrode model in the electrical impedance tomography inverse problem of determining the conductivity parameter from boundary measurements. The continuity and differentiability of the forward operator with respect to the conductivity parameter in -norms are proved. These analytical results are applied to several popular regularization formulations, which incorporate information of smoothness/sparsity on the inhomogeneity...

Error Control and Andaptivity for a Phase Relaxation Model

Zhiming Chen, Ricardo H. Nochetto, Alfred Schmidt (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The phase relaxation model is a diffuse interface model with small parameter which consists of a parabolic PDE for temperature and an ODE with double obstacles for phase variable . To decouple the system a semi-explicit Euler method with variable step-size is used for time discretization, which requires the stability constraint . Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter are further employed for space discretization. error estimates...

A Mathematical and Computational Framework for Reliable Real-Time Solution of Parametrized Partial Differential Equations

Christophe Prud'homme, Dimitrios V. Rovas, Karen Veroy, Anthony T. Patera (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present in this article two components: these components can in fact serve various goals independently, though we consider them here as an ensemble. The first component is a technique for the prediction of linear functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential features are () (provably) rapidly convergent global reduced–basis approximations — Galerkin projection onto a space spanned by...