[unknown]
Erika Battaglia[1]; Stefano Biagi[1]; Andrea Bonfiglioli[1]
- [1] Dipartimento di Matematica, Università di Bologna Piazza di Porta San Donato, 5 40126 Bologna (Italy)
Annales de l’institut Fourier (0)
- Volume: 0, Issue: 0, page 1-43
- ISSN: 0373-0956
Access Full Article
topHow to cite
topBattaglia, Erika, Biagi, Stefano, and Bonfiglioli, Andrea. "null." Annales de l’institut Fourier 0.0 (0): 1-43. <http://eudml.org/doc/275360>.
@article{Battaglia0,
affiliation = {Dipartimento di Matematica, Università di Bologna Piazza di Porta San Donato, 5 40126 Bologna (Italy); Dipartimento di Matematica, Università di Bologna Piazza di Porta San Donato, 5 40126 Bologna (Italy); Dipartimento di Matematica, Università di Bologna Piazza di Porta San Donato, 5 40126 Bologna (Italy)},
author = {Battaglia, Erika, Biagi, Stefano, Bonfiglioli, Andrea},
journal = {Annales de l’institut Fourier},
language = {eng},
number = {0},
pages = {1-43},
publisher = {Association des Annales de l’institut Fourier},
url = {http://eudml.org/doc/275360},
volume = {0},
year = {0},
}
TY - JOUR
AU - Battaglia, Erika
AU - Biagi, Stefano
AU - Bonfiglioli, Andrea
JO - Annales de l’institut Fourier
PY - 0
PB - Association des Annales de l’institut Fourier
VL - 0
IS - 0
SP - 1
EP - 43
LA - eng
UR - http://eudml.org/doc/275360
ER -
References
top- Beatrice Abbondanza, Andrea Bonfiglioli, The Dirichlet problem and the inverse mean-value theorem for a class of divergence form operators, J. Lond. Math. Soc. (2) 87 (2013), 321-346 Zbl1266.31004
- H. Aimar, L. Forzani, R. Toledano, Hölder regularity of solutions of PDE’s: a geometrical view, Comm. Partial Differential Equations 26 (2001), 1145-1173 Zbl1017.35026
- Kazuo Amano, A necessary condition for hypoellipticity of degenerate elliptic-parabolic operators, Tokyo J. Math. 2 (1979), 111-120 Zbl0429.35026
- Martin T. Barlow, Richard F. Bass, Stability of parabolic Harnack inequalities, Trans. Amer. Math. Soc. 356 (2004), 1501-1533 (electronic) Zbl1034.60070
- Erika Battaglia, Andrea Bonfiglioli, Normal families of functions for subelliptic operators and the theorems of Montel and Koebe, J. Math. Anal. Appl. 409 (2014), 1-12 Zbl1325.35011
- Denis R. Bell, Salah Eldin A. Mohammed, An extension of Hörmander’s theorem for infinitely degenerate second-order operators, Duke Math. J. 78 (1995), 453-475 Zbl0840.60053
- A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, (2007), Springer, Berlin Zbl1128.43001
- Andrea Bonfiglioli, Ermanno Lanconelli, Subharmonic functions in sub-Riemannian settings, J. Eur. Math. Soc. (JEMS) 15 (2013), 387-441 Zbl1270.31002
- Andrea Bonfiglioli, Ermanno Lanconelli, Andrea Tommasoli, Convexity of average operators for subsolutions to subelliptic equations, Anal. PDE 7 (2014), 345-373 Zbl1302.35133
- Jean-Michel Bony, Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), 277-304 xii Zbl0176.09703
- Marco Bramanti, Luca Brandolini, Ermanno Lanconelli, Francesco Uguzzoni, Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities, Mem. Amer. Math. Soc. 204 (2010) Zbl1218.35001
- Marcel Brelot, Axiomatique des fonctions harmoniques, 1965 (1969), Les Presses de l’Université de Montréal, Montreal, Que. Zbl0084.31401
- Sagun Chanillo, Richard L. Wheeden, Harnack’s inequality and mean-value inequalities for solutions of degenerate elliptic equations, Comm. Partial Differential Equations 11 (1986), 1111-1134 Zbl0634.35035
- Michael Christ, Hypoellipticity in the infinitely degenerate regime, Complex analysis and geometry (Columbus, OH, 1999) 9 (2001), 59-84, de Gruyter, Berlin Zbl1015.32032
- Giovanna Citti, Nicola Garofalo, Ermanno Lanconelli, Harnack’s inequality for sum of squares of vector fields plus a potential, Amer. J. Math. 115 (1993), 699-734 Zbl0795.35018
- C. Constantinescu, A. Cornea, On the axiomatic of harmonic functions. I, Ann. Inst. Fourier (Grenoble) 13 (1963), 373-388 Zbl0122.34001
- Virginia De Cicco, Maria Agostina Vivaldi, Harnack inequalities for Fuchsian type weighted elliptic equations, Comm. Partial Differential Equations 21 (1996), 1321-1347 Zbl0859.35013
- Ennio De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25-43 Zbl0084.31901
- Giuseppe Di Fazio, Cristian E. Gutiérrez, Ermanno Lanconelli, Covering theorems, inequalities on metric spaces and applications to PDE’s, Math. Ann. 341 (2008), 255-291 Zbl1149.46029
- J. Dieudonné, Éléments d’analyse. Tome VII. Chapitre XXIII. Première partie, (1978), Gauthier-Villars, Paris Zbl0402.58011
- E. Fabes, D. Jerison, C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 (1982), vi, 151-182 Zbl0488.35034
- E. B. Fabes, C. E. Kenig, D. Jerison, Boundary behavior of solutions to degenerate elliptic equations, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) (1983), 577-589, Wadsworth, Belmont, CA
- Eugene B. Fabes, Carlos E. Kenig, Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116 Zbl0498.35042
- V. S. Fediĭ, A certain criterion for hypoellipticity, Mat. Sb. (N.S.) 85 (127) (1971), 18-48
- C. Fefferman, D. H. Phong, The uncertainty principle and sharp Gȧrding inequalities, Comm. Pure Appl. Math. 34 (1981), 285-331 Zbl0458.35099
- C. Fefferman, D. H. Phong, Subelliptic eigenvalue problems, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) (1983), 590-606, Wadsworth, Belmont, CA Zbl0503.35071
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207 Zbl0312.35026
- G. B. Folland, J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, (1972), Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo Zbl0247.35093
- G. B. Folland, E. M. Stein, Estimates for the complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522 Zbl0293.35012
- Bruno Franchi, Ermanno Lanconelli, An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality, Comm. Partial Differential Equations 9 (1984), 1237-1264 Zbl0589.46023
- Bruno Franchi, Ermanno Lanconelli, Une condition géométrique pour l’inégalité de Harnack, J. Math. Pures Appl. (9) 64 (1985), 237-256 Zbl0599.35134
- Nicola Garofalo, Ermanno Lanconelli, Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients, Math. Ann. 283 (1989), 211-239 Zbl0638.35003
- Nicola Garofalo, Ermanno Lanconelli, Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type, Trans. Amer. Math. Soc. 321 (1990), 775-792 Zbl0719.35007
- Alexander Grigor’yan, Laurent Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier (Grenoble) 55 (2005), 825-890 Zbl1115.58024
- Cristian E. Gutiérrez, Harnack’s inequality for degenerate Schrödinger operators, Trans. Amer. Math. Soc. 312 (1989), 403-419 Zbl0685.35020
- Cristian E. Gutiérrez, Ermanno Lanconelli, Maximum principle, nonhomogeneous Harnack inequality, and Liouville theorems for -elliptic operators, Comm. Partial Differential Equations 28 (2003), 1833-1862 Zbl1064.35036
- W. Hebisch, L. Saloff-Coste, On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier (Grenoble) 51 (2001), 1437-1481 Zbl0988.58007
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171 Zbl0156.10701
- Lars Hörmander, The analysis of linear partial differential operators. I, 256 (1990), Springer-Verlag, Berlin Zbl0712.35001
- Sapto Indratno, Diego Maldonado, Sharad Silwal, On the axiomatic approach to Harnack’s inequality in doubling quasi-metric spaces, J. Differential Equations 254 (2013), 3369-3394 Zbl1270.35230
- David Jerison, Antonio Sánchez-Calle, Subelliptic, second order differential operators, Complex analysis, III (College Park, Md., 1985–86) 1277 (1987), 46-77, Springer, Berlin Zbl0634.35017
- Velimir Jurdjevic, Geometric control theory, 52 (1997), Cambridge University Press, Cambridge Zbl0940.93005
- Juha Kinnunen, Niko Marola, Michele Miranda, Fabio Paronetto, Harnack’s inequality for parabolic De Giorgi classes in metric spaces, Adv. Differential Equations 17 (2012), 801-832 Zbl1255.30057
- Alessia E. Kogoj, A control condition for a weak Harnack inequality, Nonlinear Anal. 75 (2012), 4198-4204 Zbl1243.35045
- J. J. Kohn, Boundaries of complex manifolds, Proc. Conf. Complex Analysis (Minneapolis, 1964) (1965), 81-94, Springer, Berlin Zbl0166.36003
- J. J. Kohn, Hypoellipticity of some degenerate subelliptic operators, J. Funct. Anal. 159 (1998), 203-216 Zbl0937.35024
- J. J. Kohn, L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443-492 Zbl0125.33302
- S. Kusuoka, D. Stroock, Applications of the Malliavin calculus. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985), 1-76 Zbl0568.60059
- Peter A. Loeb, Bertram Walsh, The equivalence of Harnack’s principle and Harnack’s inequality in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 15 (1965), 597-600 Zbl0132.33802
- Julián López-Gómez, The strong maximum principle, Mathematical analysis on the self-organization and self-similarity (2009), 113-123, Res. Inst. Math. Sci. (RIMS), Kyoto Zbl1193.35029
- Guozhen Lu, On Harnack’s inequality for a class of strongly degenerate Schrödinger operators formed by vector fields, Differential Integral Equations 7 (1994), 73-100 Zbl0827.35032
- Ahmed Mohammed, Harnack’s inequality for solutions of some degenerate elliptic equations, Rev. Mat. Iberoamericana 18 (2002), 325-354 Zbl1140.35364
- P. Montel, Leçons sur les familles normales de fonctions analytiques et leurs applications. Recueillies et rédigées par J. Barbotte., VIII + 306 p. Paris, Gauthier-Villars (1927). (1927) Zbl53.0303.02
- Yoshinori Morimoto, A criterion for hypoellipticity of second order differential operators, Osaka J. Math. 24 (1987), 651-675 Zbl0644.35023
- Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591 Zbl0111.09302
- John Nash, Parabolic equations, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 754-758 Zbl0078.08704
- Alberto Parmeggiani, A remark on the stability of -hypoellipticity under lower-order perturbations, J. Pseudo-Differ. Oper. Appl. 6 (2015), 227-235 Zbl1317.47053
- Andrea Pascucci, Sergio Polidoro, A Gaussian upper bound for the fundamental solutions of a class of ultraparabolic equations, J. Math. Anal. Appl. 282 (2003), 396-409 Zbl1026.35056
- Andrea Pascucci, Sergio Polidoro, Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators, Trans. Amer. Math. Soc. 358 (2006), 4873-4893 (electronic) Zbl1172.35339
- Patrizia Pucci, James Serrin, The maximum principle, (2007), Birkhäuser Verlag, Basel Zbl1134.35001
- Linda Preiss Rothschild, E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320 Zbl0346.35030
- L. Saloff-Coste, Parabolic Harnack inequality for divergence-form second-order differential operators, Potential Anal. 4 (1995), 429-467 Zbl0840.31006
- James Serrin, On the Harnack inequality for linear elliptic equations, J. Analyse Math. 4 (1955/56), 292-308 Zbl0070.32302
- E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math. 69 (1982), 209-216 Zbl0515.58032
- François Trèves, Topological vector spaces, distributions and kernels, (1967), Academic Press, New York-London Zbl0171.10402
- Pietro Zamboni, Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions, J. Differential Equations 182 (2002), 121-140 Zbl1014.35036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.