Algebraic tori as Nisnevich sheaves with transfers

Bruno Kahn

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 3, page 699-715
  • ISSN: 0240-2963

Abstract

top
We relate R -equivalence on tori with Voevodsky’s theory of homotopy invariant Nisnevich sheaves with transfers and effective motivic complexes.

How to cite

top

Kahn, Bruno. "Algebraic tori as Nisnevich sheaves with transfers." Annales de la faculté des sciences de Toulouse Mathématiques 23.3 (2014): 699-715. <http://eudml.org/doc/275402>.

@article{Kahn2014,
abstract = {We relate $R$-equivalence on tori with Voevodsky’s theory of homotopy invariant Nisnevich sheaves with transfers and effective motivic complexes.},
author = {Kahn, Bruno},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {-equivalence; -torus; Nisnevich sheaves; motivic complexes},
language = {eng},
number = {3},
pages = {699-715},
publisher = {Université Paul Sabatier, Toulouse},
title = {Algebraic tori as Nisnevich sheaves with transfers},
url = {http://eudml.org/doc/275402},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Kahn, Bruno
TI - Algebraic tori as Nisnevich sheaves with transfers
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 3
SP - 699
EP - 715
AB - We relate $R$-equivalence on tori with Voevodsky’s theory of homotopy invariant Nisnevich sheaves with transfers and effective motivic complexes.
LA - eng
KW - -equivalence; -torus; Nisnevich sheaves; motivic complexes
UR - http://eudml.org/doc/275402
ER -

References

top
  1. Barbieri-Viale (L.), Kahn (B.).— On the derived category of 1 -motives, arXiv:1009.1900. 
  2. Borovoi (M.), Kunyavskǐi (B. E‘), Lemire (N.), Reichstein (Z.).— Stably Cayley groups in characteristic zero, IMRN (2013). 
  3. Colliot-Thélène (J.-L.), Harari (D.), Skorobogatov (A.).— Compactification équivariante d’un tore (d’après Brylinski et Künnemann), Expo. Math. 23, p. 161-170 (2005). Zbl1078.14076MR2155008
  4. Colliot-Thélène (J.-L.), Sansuc (J.-J.).— La R -équivalence sur les tores, Ann. Sci. Éc. Norm. Sup. 10, p. 175-230 (1977). Zbl0356.14007MR450280
  5. Colliot-Thélène (J.-L.), Sansuc (J.-J.).— Principal homogeneous spaces under flasque tori; applications, J. Alg. 106, p. 148-205 (1987). Zbl0597.14014MR878473
  6. Gille (P.).— La R -équivalence pour les groupes algébriques réductifs définis sur un corps global, Publ. Math. IHÉS 86, p. 199-235 (1997). Zbl0943.20044MR1608570
  7. Gille (P.).— Spécialisation de la R -équivalence pour les groupes réductifs, Trans. Amer. Math. Soc. 356, p. 4465-4474 (2004). Zbl1067.20063MR2067129
  8. Huber (A.) and Kahn (B.).— The slice filtration and mixed Tate motives, Compositio Math. 142, p. 907-936 (2006). Zbl1105.14022MR2249535
  9. Kahn (B.).— Sur le groupe des classes d’un schéma arithmétique (avec un appendice de Marc Hindry), Bull. Soc. Math. France 134 (2006), p. 395-415. Zbl1222.14048MR2245999
  10. Kahn (B.), Yamazaki (T.).— Voevodsky’s motives and Weil reciprocity, Duke Math. J. 162, p. 2751-2796 (2013). Zbl1309.19009MR3127813
  11. Kahn (B.), Sujatha (R.).— Birational motives, I (preliminary version), preprint, 2002, http://www.math.uiuc.edu/K-theory/0596/. 
  12. Merkurjev (A. S.).— R -equivalence on three-dimensional tori and zero-cycles, Algebra Number Theory 2, p. 69-89 (2008). Zbl1210.19005MR2377363
  13. Merkurjev (A. S.).— Zero-cycles on algebraic tori, in The geometry of algebraic cycles, 119-122, Clay Math. Proc., 9, Amer. Math. Soc., Providence, RI (2010). Zbl1221.14008MR2648668
  14. Morel (F.), Voevodsky (V.).— A 1 -homotopy theory of schemes, Publ. Math. IHÉS 90, p. 45-143 (1999). Zbl0983.14007MR1813224
  15. Mumford (D.).— Abelian varieties (corrected reprint), TIFR - Hindustan Book Agency (2008). Zbl1177.14001MR2514037
  16. Serre J.-P..— Morphismes universels et variétés d’Albanese, in Exposés de séminaires, 1950-1989, Doc. mathématiques 1, SMF, p. 141-160 (2001). Zbl0123.13903MR160229
  17. Spiess (M.), T. Szamuely (T.).— On the Albanese map for smooth quasi-projective varieties, Math. Ann. 325, p. 1-17 (2003). Zbl1077.14026MR1957261
  18. Voevodsky (V.).— Cohomological theory of presheaves with transfers, in E. Friedlander, A. Suslin, Voevodsky (V.) Cycles, transfers and motivic cohomology theories, Ann. Math. Studies 143, Princeton University Press, 88-137 (2000). Zbl1019.14010MR1764200
  19. Voevodsky (V.).— Triangulated categories of motives over a field, in E. Friedlander, A. Suslin, Voevodsky (V.) Cycles, transfers and motivic cohomology theories, Ann. Math. Studies 143, Princeton University Press, p. 188-238 (2000). Zbl1019.14009MR1764202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.