The centralizer of a classical group and Bruhat-Tits buildings

Daniel Skodlerack[1]

  • [1] Universität Münster Mathematisches Institut Einsteinstrasse 62 48149 Münster (Germany)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 2, page 515-546
  • ISSN: 0373-0956

Abstract

top
Let G be a unitary group defined over a non-Archimedean local field of odd residue characteristic and let H be the centralizer of a semisimple rational Lie algebra element of G . We prove that the Bruhat-Tits building 𝔅 1 ( H ) of H can be affinely and G -equivariantly embedded in the Bruhat-Tits building 𝔅 1 ( G ) of G so that the Moy-Prasad filtrations are preserved. The latter property forces uniqueness in the following way. Let j and j be maps from 𝔅 1 ( H ) to 𝔅 1 ( G ) which preserve the Moy–Prasad filtrations. We prove that if there is no split torus in the center of the connected component of H then j and j are equal, and in general if both maps are affine and satisfy a mild equivariance condition they differ up to a translation of 𝔅 1 ( H ) .

How to cite

top

Skodlerack, Daniel. "The centralizer of a classical group and Bruhat-Tits buildings." Annales de l’institut Fourier 63.2 (2013): 515-546. <http://eudml.org/doc/275450>.

@article{Skodlerack2013,
abstract = {Let $G$ be a unitary group defined over a non-Archimedean local field of odd residue characteristic and let $H$ be the centralizer of a semisimple rational Lie algebra element of $G.$ We prove that the Bruhat-Tits building $\mathfrak\{B\}^1(H)$ of $H$ can be affinely and $G$-equivariantly embedded in the Bruhat-Tits building $\mathfrak\{B\}^1(G)$ of $G$ so that the Moy-Prasad filtrations are preserved. The latter property forces uniqueness in the following way. Let $j$ and $j^\{\prime\}$ be maps from $\mathfrak\{B\}^1(H)$ to $\mathfrak\{B\}^1(G)$ which preserve the Moy–Prasad filtrations. We prove that if there is no split torus in the center of the connected component of $H$ then $j$ and $j^\{\prime\}$ are equal, and in general if both maps are affine and satisfy a mild equivariance condition they differ up to a translation of $\mathfrak\{B\}^1(H).$},
affiliation = {Universität Münster Mathematisches Institut Einsteinstrasse 62 48149 Münster (Germany)},
author = {Skodlerack, Daniel},
journal = {Annales de l’institut Fourier},
keywords = {Building; classical group over a local field; centralizer; Bruhat-Tits buildings; classical groups over local fields; centralizers; Moy-Prasad filtrations; equivariant embeddings},
language = {eng},
number = {2},
pages = {515-546},
publisher = {Association des Annales de l’institut Fourier},
title = {The centralizer of a classical group and Bruhat-Tits buildings},
url = {http://eudml.org/doc/275450},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Skodlerack, Daniel
TI - The centralizer of a classical group and Bruhat-Tits buildings
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 2
SP - 515
EP - 546
AB - Let $G$ be a unitary group defined over a non-Archimedean local field of odd residue characteristic and let $H$ be the centralizer of a semisimple rational Lie algebra element of $G.$ We prove that the Bruhat-Tits building $\mathfrak{B}^1(H)$ of $H$ can be affinely and $G$-equivariantly embedded in the Bruhat-Tits building $\mathfrak{B}^1(G)$ of $G$ so that the Moy-Prasad filtrations are preserved. The latter property forces uniqueness in the following way. Let $j$ and $j^{\prime}$ be maps from $\mathfrak{B}^1(H)$ to $\mathfrak{B}^1(G)$ which preserve the Moy–Prasad filtrations. We prove that if there is no split torus in the center of the connected component of $H$ then $j$ and $j^{\prime}$ are equal, and in general if both maps are affine and satisfy a mild equivariance condition they differ up to a translation of $\mathfrak{B}^1(H).$
LA - eng
KW - Building; classical group over a local field; centralizer; Bruhat-Tits buildings; classical groups over local fields; centralizers; Moy-Prasad filtrations; equivariant embeddings
UR - http://eudml.org/doc/275450
ER -

References

top
  1. A. Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR1102012
  2. P. Broussous, B. Lemaire, Building of GL ( m , D ) and centralizers, Transform. Groups 7 (2002), 15-50 Zbl1001.22016MR1888474
  3. P. Broussous, V. Sécherre, S. Stevens, Smooth representations of GL(m,D), V: Endo-classes, (2010) Zbl1280.22018
  4. P. Broussous, S. Stevens, Buildings of classical groups and centralizers of Lie algebra elements, J. Lie Theory 19 (2009), 55-78 Zbl1165.22018MR2531872
  5. K.S. Brown, Buildings, (1989), Springer-Verlag, New York Zbl0922.20034MR969123
  6. F. Bruhat, J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. (1984), 197-376 Zbl0597.14041MR756316
  7. F. Bruhat, J. Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France 112 (1984), 259-301 Zbl0565.14028MR788969
  8. F. Bruhat, J. Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires, Bull. Soc. Math. France 115 (1987), 141-195 Zbl0636.20027MR919421
  9. C.J. Bushnell, P.C. Kutzko, The admissible dual of GL ( N ) via compact open subgroups, 129 (1993), Princeton Univ. Press, Princeton, NJ Zbl0787.22016MR1204652
  10. M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, 44 (1998), Amer. Math. Soc., Providence, RI Zbl0955.16001MR1632779
  11. E. Landvogt, Some functorial properties of the Bruhat-Tits building, J. Reine Angew. Math. 518 (2000), 213-241 Zbl0937.20026MR1739403
  12. B. Lemaire, Comparison of lattice filtrations and Moy-Prasad filtrations for classical groups, J. Lie Theory 19 (2009), 29-54 Zbl1178.20044MR2532460
  13. A. Moy, G. Prasad, Unrefined minimal K -types for p -adic groups, Invent. Math. 116 (1994), 393-408 Zbl0804.22008MR1253198
  14. V. Platonov, A. Rapinchuk, Algebraic groups and number theory, 139 (1994), Acad. press, Inc., BOSTON Zbl0841.20046MR1278263
  15. G. Prasad, J.-K. Yu, On finite group actions on reductive groups and buildings, Invent. Math. 147 (2002), 545-560 Zbl1020.22003MR1893005
  16. W. Scharlau, Quadratic and Hermitian Forms, (1985), Springer-Verlag, Berlin and Heidelberg Zbl0584.10010MR770063
  17. V. Sécherre, Représentations lisses de GL ( m , D ) . I. Caractères simples, Bull. Soc. Math. France 132 (2004), 327-396 Zbl1079.22016MR2081220
  18. V. Sécherre, Représentations lisses de GL ( m , D ) . II. β -extensions, Compos. Math. 141 (2005), 1531-1550 Zbl1082.22011MR2188448
  19. V. Sécherre, Représentations lisses de GL ( m , D ) . III. Types simples, Ann. Sci. École Norm. Sup. (4) 38 (2005), 951-977 Zbl1106.22014MR2216835
  20. V. Sécherre, S. Stevens, Représentations lisses de GL m ( D ) . IV. Représentations supercuspidales, J. Inst. Math. Jussieu 7 (2008), 527-574 Zbl1140.22014MR2427423
  21. V. Sécherre, S. Stevens, Smooth Representations of GL m ( D ) VI: Semisimple Types, (2011) Zbl1246.22023
  22. S. Stevens, Semisimple characters for p-adic classical groups, Duke Math. J. 127 (2005), 123-173 Zbl1063.22018MR2126498
  23. A. Weil, Adeles and algebraic groups, 23 (1982), Birkhäuser Boston, Mass. Zbl0493.14028MR670072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.