The centralizer of a classical group and Bruhat-Tits buildings
- [1] Universität Münster Mathematisches Institut Einsteinstrasse 62 48149 Münster (Germany)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 2, page 515-546
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR1102012
- P. Broussous, B. Lemaire, Building of and centralizers, Transform. Groups 7 (2002), 15-50 Zbl1001.22016MR1888474
- P. Broussous, V. Sécherre, S. Stevens, Smooth representations of GL(m,D), V: Endo-classes, (2010) Zbl1280.22018
- P. Broussous, S. Stevens, Buildings of classical groups and centralizers of Lie algebra elements, J. Lie Theory 19 (2009), 55-78 Zbl1165.22018MR2531872
- K.S. Brown, Buildings, (1989), Springer-Verlag, New York Zbl0922.20034MR969123
- F. Bruhat, J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. (1984), 197-376 Zbl0597.14041MR756316
- F. Bruhat, J. Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France 112 (1984), 259-301 Zbl0565.14028MR788969
- F. Bruhat, J. Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires, Bull. Soc. Math. France 115 (1987), 141-195 Zbl0636.20027MR919421
- C.J. Bushnell, P.C. Kutzko, The admissible dual of via compact open subgroups, 129 (1993), Princeton Univ. Press, Princeton, NJ Zbl0787.22016MR1204652
- M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, 44 (1998), Amer. Math. Soc., Providence, RI Zbl0955.16001MR1632779
- E. Landvogt, Some functorial properties of the Bruhat-Tits building, J. Reine Angew. Math. 518 (2000), 213-241 Zbl0937.20026MR1739403
- B. Lemaire, Comparison of lattice filtrations and Moy-Prasad filtrations for classical groups, J. Lie Theory 19 (2009), 29-54 Zbl1178.20044MR2532460
- A. Moy, G. Prasad, Unrefined minimal -types for -adic groups, Invent. Math. 116 (1994), 393-408 Zbl0804.22008MR1253198
- V. Platonov, A. Rapinchuk, Algebraic groups and number theory, 139 (1994), Acad. press, Inc., BOSTON Zbl0841.20046MR1278263
- G. Prasad, J.-K. Yu, On finite group actions on reductive groups and buildings, Invent. Math. 147 (2002), 545-560 Zbl1020.22003MR1893005
- W. Scharlau, Quadratic and Hermitian Forms, (1985), Springer-Verlag, Berlin and Heidelberg Zbl0584.10010MR770063
- V. Sécherre, Représentations lisses de . I. Caractères simples, Bull. Soc. Math. France 132 (2004), 327-396 Zbl1079.22016MR2081220
- V. Sécherre, Représentations lisses de . II. -extensions, Compos. Math. 141 (2005), 1531-1550 Zbl1082.22011MR2188448
- V. Sécherre, Représentations lisses de . III. Types simples, Ann. Sci. École Norm. Sup. (4) 38 (2005), 951-977 Zbl1106.22014MR2216835
- V. Sécherre, S. Stevens, Représentations lisses de . IV. Représentations supercuspidales, J. Inst. Math. Jussieu 7 (2008), 527-574 Zbl1140.22014MR2427423
- V. Sécherre, S. Stevens, Smooth Representations of VI: Semisimple Types, (2011) Zbl1246.22023
- S. Stevens, Semisimple characters for p-adic classical groups, Duke Math. J. 127 (2005), 123-173 Zbl1063.22018MR2126498
- A. Weil, Adeles and algebraic groups, 23 (1982), Birkhäuser Boston, Mass. Zbl0493.14028MR670072