The centralizer of a classical group and Bruhat-Tits buildings
- [1] Universität Münster Mathematisches Institut Einsteinstrasse 62 48149 Münster (Germany)
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 2, page 515-546
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSkodlerack, Daniel. "The centralizer of a classical group and Bruhat-Tits buildings." Annales de l’institut Fourier 63.2 (2013): 515-546. <http://eudml.org/doc/275450>.
@article{Skodlerack2013,
abstract = {Let $G$ be a unitary group defined over a non-Archimedean local field of odd residue characteristic and let $H$ be the centralizer of a semisimple rational Lie algebra element of $G.$ We prove that the Bruhat-Tits building $\mathfrak\{B\}^1(H)$ of $H$ can be affinely and $G$-equivariantly embedded in the Bruhat-Tits building $\mathfrak\{B\}^1(G)$ of $G$ so that the Moy-Prasad filtrations are preserved. The latter property forces uniqueness in the following way. Let $j$ and $j^\{\prime\}$ be maps from $\mathfrak\{B\}^1(H)$ to $\mathfrak\{B\}^1(G)$ which preserve the Moy–Prasad filtrations. We prove that if there is no split torus in the center of the connected component of $H$ then $j$ and $j^\{\prime\}$ are equal, and in general if both maps are affine and satisfy a mild equivariance condition they differ up to a translation of $\mathfrak\{B\}^1(H).$},
affiliation = {Universität Münster Mathematisches Institut Einsteinstrasse 62 48149 Münster (Germany)},
author = {Skodlerack, Daniel},
journal = {Annales de l’institut Fourier},
keywords = {Building; classical group over a local field; centralizer; Bruhat-Tits buildings; classical groups over local fields; centralizers; Moy-Prasad filtrations; equivariant embeddings},
language = {eng},
number = {2},
pages = {515-546},
publisher = {Association des Annales de l’institut Fourier},
title = {The centralizer of a classical group and Bruhat-Tits buildings},
url = {http://eudml.org/doc/275450},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Skodlerack, Daniel
TI - The centralizer of a classical group and Bruhat-Tits buildings
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 2
SP - 515
EP - 546
AB - Let $G$ be a unitary group defined over a non-Archimedean local field of odd residue characteristic and let $H$ be the centralizer of a semisimple rational Lie algebra element of $G.$ We prove that the Bruhat-Tits building $\mathfrak{B}^1(H)$ of $H$ can be affinely and $G$-equivariantly embedded in the Bruhat-Tits building $\mathfrak{B}^1(G)$ of $G$ so that the Moy-Prasad filtrations are preserved. The latter property forces uniqueness in the following way. Let $j$ and $j^{\prime}$ be maps from $\mathfrak{B}^1(H)$ to $\mathfrak{B}^1(G)$ which preserve the Moy–Prasad filtrations. We prove that if there is no split torus in the center of the connected component of $H$ then $j$ and $j^{\prime}$ are equal, and in general if both maps are affine and satisfy a mild equivariance condition they differ up to a translation of $\mathfrak{B}^1(H).$
LA - eng
KW - Building; classical group over a local field; centralizer; Bruhat-Tits buildings; classical groups over local fields; centralizers; Moy-Prasad filtrations; equivariant embeddings
UR - http://eudml.org/doc/275450
ER -
References
top- A. Borel, Linear algebraic groups, 126 (1991), Springer-Verlag, New York Zbl0726.20030MR1102012
- P. Broussous, B. Lemaire, Building of and centralizers, Transform. Groups 7 (2002), 15-50 Zbl1001.22016MR1888474
- P. Broussous, V. Sécherre, S. Stevens, Smooth representations of GL(m,D), V: Endo-classes, (2010) Zbl1280.22018
- P. Broussous, S. Stevens, Buildings of classical groups and centralizers of Lie algebra elements, J. Lie Theory 19 (2009), 55-78 Zbl1165.22018MR2531872
- K.S. Brown, Buildings, (1989), Springer-Verlag, New York Zbl0922.20034MR969123
- F. Bruhat, J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. (1984), 197-376 Zbl0597.14041MR756316
- F. Bruhat, J. Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France 112 (1984), 259-301 Zbl0565.14028MR788969
- F. Bruhat, J. Tits, Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires, Bull. Soc. Math. France 115 (1987), 141-195 Zbl0636.20027MR919421
- C.J. Bushnell, P.C. Kutzko, The admissible dual of via compact open subgroups, 129 (1993), Princeton Univ. Press, Princeton, NJ Zbl0787.22016MR1204652
- M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, 44 (1998), Amer. Math. Soc., Providence, RI Zbl0955.16001MR1632779
- E. Landvogt, Some functorial properties of the Bruhat-Tits building, J. Reine Angew. Math. 518 (2000), 213-241 Zbl0937.20026MR1739403
- B. Lemaire, Comparison of lattice filtrations and Moy-Prasad filtrations for classical groups, J. Lie Theory 19 (2009), 29-54 Zbl1178.20044MR2532460
- A. Moy, G. Prasad, Unrefined minimal -types for -adic groups, Invent. Math. 116 (1994), 393-408 Zbl0804.22008MR1253198
- V. Platonov, A. Rapinchuk, Algebraic groups and number theory, 139 (1994), Acad. press, Inc., BOSTON Zbl0841.20046MR1278263
- G. Prasad, J.-K. Yu, On finite group actions on reductive groups and buildings, Invent. Math. 147 (2002), 545-560 Zbl1020.22003MR1893005
- W. Scharlau, Quadratic and Hermitian Forms, (1985), Springer-Verlag, Berlin and Heidelberg Zbl0584.10010MR770063
- V. Sécherre, Représentations lisses de . I. Caractères simples, Bull. Soc. Math. France 132 (2004), 327-396 Zbl1079.22016MR2081220
- V. Sécherre, Représentations lisses de . II. -extensions, Compos. Math. 141 (2005), 1531-1550 Zbl1082.22011MR2188448
- V. Sécherre, Représentations lisses de . III. Types simples, Ann. Sci. École Norm. Sup. (4) 38 (2005), 951-977 Zbl1106.22014MR2216835
- V. Sécherre, S. Stevens, Représentations lisses de . IV. Représentations supercuspidales, J. Inst. Math. Jussieu 7 (2008), 527-574 Zbl1140.22014MR2427423
- V. Sécherre, S. Stevens, Smooth Representations of VI: Semisimple Types, (2011) Zbl1246.22023
- S. Stevens, Semisimple characters for p-adic classical groups, Duke Math. J. 127 (2005), 123-173 Zbl1063.22018MR2126498
- A. Weil, Adeles and algebraic groups, 23 (1982), Birkhäuser Boston, Mass. Zbl0493.14028MR670072
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.