Représentations lisses de GL m D , III : types simples

Vincent Sécherre

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 6, page 951-977
  • ISSN: 0012-9593

How to cite

top

Sécherre, Vincent. "Représentations lisses de ${\mathrm {GL}}_{m}\left(D\right)$, III : types simples." Annales scientifiques de l'École Normale Supérieure 38.6 (2005): 951-977. <http://eudml.org/doc/82679>.

@article{Sécherre2005,
author = {Sécherre, Vincent},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {6},
pages = {951-977},
publisher = {Elsevier},
title = {Représentations lisses de $\{\mathrm \{GL\}\}_\{m\}\left(D\right)$, III : types simples},
url = {http://eudml.org/doc/82679},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Sécherre, Vincent
TI - Représentations lisses de ${\mathrm {GL}}_{m}\left(D\right)$, III : types simples
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 6
SP - 951
EP - 977
LA - fre
UR - http://eudml.org/doc/82679
ER -

References

top
  1. [1] Bernstein J.N., Le “centre” de Bernstein, in: Representations of Reductive Groups over a Local Field, Travaux en Cours, Hermann, Paris, 1984, pp. 1-32, written by P. Deligne. Zbl0599.22016
  2. [2] Broussous P., Lemaire B., Building of GL ( m , D ) and centralizers, Transform. Groups7 (1) (2002) 15-50. Zbl1001.22016MR1888474
  3. [3] Broussous P., Hereditary orders and embeddings of local fields in simple algebras, J. Algebra204 (1) (1998) 324-336. Zbl0911.16011MR1623985
  4. [4] Broussous P., Minimal strata for GL ( m , D ) , J. reine angew. Math.514 (1999) 199-236. Zbl0936.22011MR1711267
  5. [5] Broussous P., Grabitz M., Pure elements and intertwining classes of simple strata in local central simple algebras, Comm. Algebra28 (11) (2000) 5405-5442. Zbl0968.22015MR1785509
  6. [6] Bushnell C.J., Kutzko P.C., The Admissible Dual of GL N via Compact Open Subgroups, Princeton University Press, Princeton, NJ, 1993. Zbl0787.22016MR1204652
  7. [7] Bushnell C.J., Kutzko P.C., Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3)77 (3) (1998) 582-634. Zbl0911.22014MR1643417
  8. [8] Bushnell C.J., Kutzko P.C., Semisimple types in GL n , Compositio Math.119 (1) (1999) 53-97. Zbl0933.22027MR1711578
  9. [9] Grabitz M., Continuation of hereditary orders in local central simple algebras, J. Number Theory77 (1) (1999) 1-26. Zbl0932.16010MR1695697
  10. [10] Grabitz M., Silberger A.J., Zink E.-W., Level zero types and Hecke algebras for local central simple algebras, J. Number Theory91 (1) (2001) 92-125. Zbl1009.22016MR1869321
  11. [11] Howe R., Harish–Chandra Homomorphisms for p-Adic Groups, CBMS Regional Conference Series in Mathematics, vol. 59, Conference Board of the Mathematical Sciences, Washington, DC, 1985, with the collaboration of Allen Moy. Zbl0593.22014MR821216
  12. [12] Reiner I., Maximal Orders, London Mathematical Society Monographs, vol. 5, Academic Press (A subsidiary of Harcourt Brace Jovanovich, Publishers), London, 1975. Zbl0305.16001MR393100
  13. [13] Sécherre V., Représentations lisses de GL ( m , D ) , I : caractères simples, Bull. Soc. Math. France132 (3) (2004) 327-396. Zbl1079.22016MR2081220
  14. [14] Sécherre V., Représentations lisses de GL ( m , D ) , II :β-extensions, Compositio Math.141 (2005) 1531-1550. Zbl1082.22011
  15. [15] Stevens S., Semisimple characters for p-adic classical groups, Duke Math. J.127 (1) (2005) 123-173. Zbl1063.22018MR2126498
  16. [16] Zink E.-W., More on embeddings of local fields in simple algebras, J. Number Theory77 (1) (1999) 51-61. Zbl1040.11091MR1695699

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.