Représentations lisses de , III : types simples

Vincent Sécherre

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 6, page 951-977
  • ISSN: 0012-9593

How to cite

top

Sécherre, Vincent. "Représentations lisses de ${\mathrm {GL}}_{m}\left(D\right)$, III : types simples." Annales scientifiques de l'École Normale Supérieure 38.6 (2005): 951-977. <http://eudml.org/doc/82679>.

@article{Sécherre2005,
author = {Sécherre, Vincent},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {6},
pages = {951-977},
publisher = {Elsevier},
title = {Représentations lisses de $\{\mathrm \{GL\}\}_\{m\}\left(D\right)$, III : types simples},
url = {http://eudml.org/doc/82679},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Sécherre, Vincent
TI - Représentations lisses de ${\mathrm {GL}}_{m}\left(D\right)$, III : types simples
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 6
SP - 951
EP - 977
LA - fre
UR - http://eudml.org/doc/82679
ER -

References

top
  1. [1] Bernstein J.N., Le “centre” de Bernstein, in: Representations of Reductive Groups over a Local Field, Travaux en Cours, Hermann, Paris, 1984, pp. 1-32, written by P. Deligne. Zbl0599.22016
  2. [2] Broussous P., Lemaire B., Building of and centralizers, Transform. Groups7 (1) (2002) 15-50. Zbl1001.22016MR1888474
  3. [3] Broussous P., Hereditary orders and embeddings of local fields in simple algebras, J. Algebra204 (1) (1998) 324-336. Zbl0911.16011MR1623985
  4. [4] Broussous P., Minimal strata for , J. reine angew. Math.514 (1999) 199-236. Zbl0936.22011MR1711267
  5. [5] Broussous P., Grabitz M., Pure elements and intertwining classes of simple strata in local central simple algebras, Comm. Algebra28 (11) (2000) 5405-5442. Zbl0968.22015MR1785509
  6. [6] Bushnell C.J., Kutzko P.C., The Admissible Dual of via Compact Open Subgroups, Princeton University Press, Princeton, NJ, 1993. Zbl0787.22016MR1204652
  7. [7] Bushnell C.J., Kutzko P.C., Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3)77 (3) (1998) 582-634. Zbl0911.22014MR1643417
  8. [8] Bushnell C.J., Kutzko P.C., Semisimple types in , Compositio Math.119 (1) (1999) 53-97. Zbl0933.22027MR1711578
  9. [9] Grabitz M., Continuation of hereditary orders in local central simple algebras, J. Number Theory77 (1) (1999) 1-26. Zbl0932.16010MR1695697
  10. [10] Grabitz M., Silberger A.J., Zink E.-W., Level zero types and Hecke algebras for local central simple algebras, J. Number Theory91 (1) (2001) 92-125. Zbl1009.22016MR1869321
  11. [11] Howe R., Harish–Chandra Homomorphisms for p-Adic Groups, CBMS Regional Conference Series in Mathematics, vol. 59, Conference Board of the Mathematical Sciences, Washington, DC, 1985, with the collaboration of Allen Moy. Zbl0593.22014MR821216
  12. [12] Reiner I., Maximal Orders, London Mathematical Society Monographs, vol. 5, Academic Press (A subsidiary of Harcourt Brace Jovanovich, Publishers), London, 1975. Zbl0305.16001MR393100
  13. [13] Sécherre V., Représentations lisses de , I : caractères simples, Bull. Soc. Math. France132 (3) (2004) 327-396. Zbl1079.22016MR2081220
  14. [14] Sécherre V., Représentations lisses de , II :β-extensions, Compositio Math.141 (2005) 1531-1550. Zbl1082.22011
  15. [15] Stevens S., Semisimple characters for p-adic classical groups, Duke Math. J.127 (1) (2005) 123-173. Zbl1063.22018MR2126498
  16. [16] Zink E.-W., More on embeddings of local fields in simple algebras, J. Number Theory77 (1) (1999) 51-61. Zbl1040.11091MR1695699

NotesEmbed ?

top

You must be logged in to post comments.