A Kazhdan-Margulis-Zassenhaus lemma for Hilbert geometry

Mickaël Crampon[1]; Ludovic Marquis[2]

  • [1] Universidad de Santiago de Chile, Departamento de Matemática y Ciencia de la Computación, Av. Las Sophoras 173 - Estación Central, Santiago de Chile Chile
  • [2] IRMAR 263 Av. du Général Leclerc CS 74205 35042 Rennes Cedex France

Annales mathématiques Blaise Pascal (2013)

  • Volume: 20, Issue: 2, page 363-376
  • ISSN: 1259-1734

Abstract

top
We prove a Kazhdan-Margulis-Zassenhaus lemma for Hilbert geometries. More precisely, in every dimension n there exists a constant ε n > 0 such that, for any properly convex open set Ω and any point x Ω , any discrete group generated by a finite number of automorphisms of Ω , which displace x at a distance less than ε n , is virtually nilpotent.

How to cite

top

Crampon, Mickaël, and Marquis, Ludovic. "Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert." Annales mathématiques Blaise Pascal 20.2 (2013): 363-376. <http://eudml.org/doc/275474>.

@article{Crampon2013,
abstract = {On montre un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Plus précisément, en toute dimension $n$, il existe une constante $\varepsilon _n &gt; 0$ telle que, pour tout ouvert proprement convexe $\Omega $, pour tout point $x \in \Omega $, tout groupe discret engendré par un nombre fini d’automorphismes de $\Omega $ qui déplacent le point $x$ de moins de $\varepsilon _n$ est virtuellement nilpotent.},
affiliation = {Universidad de Santiago de Chile, Departamento de Matemática y Ciencia de la Computación, Av. Las Sophoras 173 - Estación Central, Santiago de Chile Chile; IRMAR 263 Av. du Général Leclerc CS 74205 35042 Rennes Cedex France},
author = {Crampon, Mickaël, Marquis, Ludovic},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Hilbert’s geometry; lemma of Margulis; action geometrically finite},
language = {fre},
month = {7},
number = {2},
pages = {363-376},
publisher = {Annales mathématiques Blaise Pascal},
title = {Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert},
url = {http://eudml.org/doc/275474},
volume = {20},
year = {2013},
}

TY - JOUR
AU - Crampon, Mickaël
AU - Marquis, Ludovic
TI - Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert
JO - Annales mathématiques Blaise Pascal
DA - 2013/7//
PB - Annales mathématiques Blaise Pascal
VL - 20
IS - 2
SP - 363
EP - 376
AB - On montre un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Plus précisément, en toute dimension $n$, il existe une constante $\varepsilon _n &gt; 0$ telle que, pour tout ouvert proprement convexe $\Omega $, pour tout point $x \in \Omega $, tout groupe discret engendré par un nombre fini d’automorphismes de $\Omega $ qui déplacent le point $x$ de moins de $\varepsilon _n$ est virtuellement nilpotent.
LA - fre
KW - Hilbert’s geometry; lemma of Margulis; action geometrically finite
UR - http://eudml.org/doc/275474
ER -

References

top
  1. Werner Ballmann, Mikhael Gromov, Viktor Schroeder, Manifolds of nonpositive curvature, 61 (1985), Birkhäuser Boston Inc., Boston, MA Zbl0591.53001MR823981
  2. Yves Benoist, Automorphismes des cônes convexes, Invent. Math. 141 (2000), 149-193 Zbl0957.22008MR1767272
  3. Yves Benoist, Convexes divisibles. II, Duke Math. J. 120 (2003), 97-120 Zbl1037.22022MR2010735
  4. Yves Benoist, Convexes divisibles. I, Algebraic groups and arithmetic (2004), 339-374, Tata Inst. Fund. Res., Mumbai Zbl1084.37026MR2094116
  5. Yves Benoist, Convexes divisibles. III, Ann. Sci. École Norm. Sup. (4) 38 (2005), 793-832 Zbl1085.22006MR2195260
  6. Yves Benoist, Convexes divisibles. IV. Structure du bord en dimension 3, Invent. Math. 164 (2006), 249-278 Zbl1107.22006MR2218481
  7. Yves Benoist, Convexes hyperboliques et quasiisométries, Geom. Dedicata 122 (2006), 109-134 Zbl1122.20020MR2295544
  8. Jean-Paul Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960), 229-332 Zbl0098.35204MR124005
  9. A. Bosché, Symmetric cones, the Hilbert and Thompson metrics, ArXiv e-prints (2012) 
  10. E. Breuillard, B. Green, T. Tao, The structure of approximate groups, ArXiv e-prints (2011) Zbl1229.20045MR3090256
  11. Herbert Busemann, The geometry of geodesics, (1955), Academic Press Inc., New York, N. Y. Zbl0112.37002MR75623
  12. Suhyoung Choi, Convex decompositions of real projective surfaces. I. π -annuli and convexity, J. Differential Geom. 40 (1994), 165-208 Zbl0818.53042MR1285533
  13. Suhyoung Choi, Convex decompositions of real projective surfaces. II. Admissible decompositions, J. Differential Geom. 40 (1994), 239-283 Zbl0822.53009MR1293655
  14. Suhyoung Choi, The Margulis lemma and the thick and thin decomposition for convex real projective surfaces, Adv. Math. 122 (1996), 150-191 Zbl0862.53008MR1405450
  15. Suhyoung Choi, The deformation spaces of projective structures on 3-dimensional Coxeter orbifolds, Geom. Dedicata 119 (2006), 69-90 Zbl1103.57013MR2247648
  16. Suhyoung Choi, The convex real projective manifolds and orbifolds with radial ends : the openness of deformations, ArXiv e-prints (2010) 
  17. Suhyoung Choi, William Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993), 657-661 Zbl0810.57005MR1145415
  18. Suhyoung Choi, William Goldman, The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. (N.S.) 34 (1997), 161-171 Zbl0866.57001MR1414974
  19. Bruno Colbois, Constantin Vernicos, Bas du spectre et delta-hyperbolicité en géométrie de Hilbert plane, Bull. Soc. Math. France 134 (2006), 357-381 Zbl1117.53034MR2245997
  20. D. Cooper, D. Long, S. Tillmann, On Convex Projective Manifolds and Cusps, ArXiv e-prints (2011) Zbl06431971
  21. M. Crampon, L. Marquis, Finitude géométrique en géométrie de Hilbert, ArXiv e-prints (2012) 
  22. William Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990), 791-845 Zbl0711.53033MR1053346
  23. William Goldman, Projective geometry on manifolds, (2010) 
  24. M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) 182 (1993), 1-295, Cambridge Univ. Press, Cambridge Zbl0841.20039MR1253544
  25. Pierre de la Harpe, On Hilbert’s metric for simplices, Geometric group theory, Vol. 1 (Sussex, 1991) 181 (1993), 97-119, Cambridge Univ. Press, Cambridge Zbl0832.52002MR1238518
  26. Dennis Johnson, John J. Millson, Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) 67 (1987), 48-106, Birkhäuser Boston, Boston, MA Zbl0664.53023MR900823
  27. Victor Kac, Èrnest Vinberg, Quasi-homogeneous cones, Mat. Zametki 1 (1967), 347-354 Zbl0163.16902MR208470
  28. Michael Kapovich, Convex projective structures on Gromov-Thurston manifolds, Geom. Topol. 11 (2007), 1777-1830 Zbl1130.53024MR2350468
  29. D. A. Každan, G. A. Margulis, A proof of Selberg’s hypothesis, Mat. Sb. (N.S.) 75 (117) (1968), 163-168 Zbl0241.22024MR223487
  30. Bas Lemmens, Cormac Walsh, Isometries of polyhedral Hilbert geometries, J. Topol. Anal. 3 (2011), 213-241 Zbl1220.53090MR2819195
  31. G. A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2 (1975), 21-34, Canad. Math. Congress, Montreal, Que. Zbl0336.57037MR492072
  32. Ludovic Marquis, Espace des modules marqués des surfaces projectives convexes de volume fini, Geom. Topol. 14 (2010), 2103-2149 Zbl1225.32022MR2740643
  33. Ludovic Marquis, Exemples de variétés projectives strictement convexes de volume fini en dimension quelconque, Enseign. Math. (2) 58 (2012), 3-47 Zbl1284.57021MR2985008
  34. Ludovic Marquis, Finite volume convex projective surface. (Surface projective convexe de volume fini.), Ann. Inst. Fourier 62 (2012), 325-392 Zbl1254.57015MR2986273
  35. V. D. Milman, A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n -dimensional space, Geometric aspects of functional analysis (1987–88) 1376 (1989), 64-104, Springer, Berlin Zbl0679.46012MR1008717
  36. M. S. Raghunathan, Discrete subgroups of Lie groups, (1972), Springer-Verlag, New York Zbl0254.22005MR507234
  37. Constantin Vernicos, Introduction aux géométries de Hilbert, Actes de Séminaire de Théorie Spectrale et Géométrie. Vol. 23. Année 2004–2005 23 (2005), 145-168, Univ. Grenoble I, Saint Zbl1100.53031MR2270228
  38. Jacques Vey, Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 641-665 Zbl0206.51302MR283720
  39. Hans Zassenhaus, Beweis eines Satzes über diskrete Gruppen., Abh. math. Sem. Hansische Univ. 12 (1938), 289-312 Zbl0023.01403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.