A Kazhdan-Margulis-Zassenhaus lemma for Hilbert geometry
Mickaël Crampon[1]; Ludovic Marquis[2]
- [1] Universidad de Santiago de Chile, Departamento de Matemática y Ciencia de la Computación, Av. Las Sophoras 173 - Estación Central, Santiago de Chile Chile
- [2] IRMAR 263 Av. du Général Leclerc CS 74205 35042 Rennes Cedex France
Annales mathématiques Blaise Pascal (2013)
- Volume: 20, Issue: 2, page 363-376
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topCrampon, Mickaël, and Marquis, Ludovic. "Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert." Annales mathématiques Blaise Pascal 20.2 (2013): 363-376. <http://eudml.org/doc/275474>.
@article{Crampon2013,
abstract = {On montre un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Plus précisément, en toute dimension $n$, il existe une constante $\varepsilon _n > 0$ telle que, pour tout ouvert proprement convexe $\Omega $, pour tout point $x \in \Omega $, tout groupe discret engendré par un nombre fini d’automorphismes de $\Omega $ qui déplacent le point $x$ de moins de $\varepsilon _n$ est virtuellement nilpotent.},
affiliation = {Universidad de Santiago de Chile, Departamento de Matemática y Ciencia de la Computación, Av. Las Sophoras 173 - Estación Central, Santiago de Chile Chile; IRMAR 263 Av. du Général Leclerc CS 74205 35042 Rennes Cedex France},
author = {Crampon, Mickaël, Marquis, Ludovic},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Hilbert’s geometry; lemma of Margulis; action geometrically finite},
language = {fre},
month = {7},
number = {2},
pages = {363-376},
publisher = {Annales mathématiques Blaise Pascal},
title = {Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert},
url = {http://eudml.org/doc/275474},
volume = {20},
year = {2013},
}
TY - JOUR
AU - Crampon, Mickaël
AU - Marquis, Ludovic
TI - Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert
JO - Annales mathématiques Blaise Pascal
DA - 2013/7//
PB - Annales mathématiques Blaise Pascal
VL - 20
IS - 2
SP - 363
EP - 376
AB - On montre un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Plus précisément, en toute dimension $n$, il existe une constante $\varepsilon _n > 0$ telle que, pour tout ouvert proprement convexe $\Omega $, pour tout point $x \in \Omega $, tout groupe discret engendré par un nombre fini d’automorphismes de $\Omega $ qui déplacent le point $x$ de moins de $\varepsilon _n$ est virtuellement nilpotent.
LA - fre
KW - Hilbert’s geometry; lemma of Margulis; action geometrically finite
UR - http://eudml.org/doc/275474
ER -
References
top- Werner Ballmann, Mikhael Gromov, Viktor Schroeder, Manifolds of nonpositive curvature, 61 (1985), Birkhäuser Boston Inc., Boston, MA Zbl0591.53001MR823981
- Yves Benoist, Automorphismes des cônes convexes, Invent. Math. 141 (2000), 149-193 Zbl0957.22008MR1767272
- Yves Benoist, Convexes divisibles. II, Duke Math. J. 120 (2003), 97-120 Zbl1037.22022MR2010735
- Yves Benoist, Convexes divisibles. I, Algebraic groups and arithmetic (2004), 339-374, Tata Inst. Fund. Res., Mumbai Zbl1084.37026MR2094116
- Yves Benoist, Convexes divisibles. III, Ann. Sci. École Norm. Sup. (4) 38 (2005), 793-832 Zbl1085.22006MR2195260
- Yves Benoist, Convexes divisibles. IV. Structure du bord en dimension 3, Invent. Math. 164 (2006), 249-278 Zbl1107.22006MR2218481
- Yves Benoist, Convexes hyperboliques et quasiisométries, Geom. Dedicata 122 (2006), 109-134 Zbl1122.20020MR2295544
- Jean-Paul Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960), 229-332 Zbl0098.35204MR124005
- A. Bosché, Symmetric cones, the Hilbert and Thompson metrics, ArXiv e-prints (2012)
- E. Breuillard, B. Green, T. Tao, The structure of approximate groups, ArXiv e-prints (2011) Zbl1229.20045MR3090256
- Herbert Busemann, The geometry of geodesics, (1955), Academic Press Inc., New York, N. Y. Zbl0112.37002MR75623
- Suhyoung Choi, Convex decompositions of real projective surfaces. I. -annuli and convexity, J. Differential Geom. 40 (1994), 165-208 Zbl0818.53042MR1285533
- Suhyoung Choi, Convex decompositions of real projective surfaces. II. Admissible decompositions, J. Differential Geom. 40 (1994), 239-283 Zbl0822.53009MR1293655
- Suhyoung Choi, The Margulis lemma and the thick and thin decomposition for convex real projective surfaces, Adv. Math. 122 (1996), 150-191 Zbl0862.53008MR1405450
- Suhyoung Choi, The deformation spaces of projective structures on 3-dimensional Coxeter orbifolds, Geom. Dedicata 119 (2006), 69-90 Zbl1103.57013MR2247648
- Suhyoung Choi, The convex real projective manifolds and orbifolds with radial ends : the openness of deformations, ArXiv e-prints (2010)
- Suhyoung Choi, William Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993), 657-661 Zbl0810.57005MR1145415
- Suhyoung Choi, William Goldman, The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc. (N.S.) 34 (1997), 161-171 Zbl0866.57001MR1414974
- Bruno Colbois, Constantin Vernicos, Bas du spectre et delta-hyperbolicité en géométrie de Hilbert plane, Bull. Soc. Math. France 134 (2006), 357-381 Zbl1117.53034MR2245997
- D. Cooper, D. Long, S. Tillmann, On Convex Projective Manifolds and Cusps, ArXiv e-prints (2011) Zbl06431971
- M. Crampon, L. Marquis, Finitude géométrique en géométrie de Hilbert, ArXiv e-prints (2012)
- William Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990), 791-845 Zbl0711.53033MR1053346
- William Goldman, Projective geometry on manifolds, (2010)
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) 182 (1993), 1-295, Cambridge Univ. Press, Cambridge Zbl0841.20039MR1253544
- Pierre de la Harpe, On Hilbert’s metric for simplices, Geometric group theory, Vol. 1 (Sussex, 1991) 181 (1993), 97-119, Cambridge Univ. Press, Cambridge Zbl0832.52002MR1238518
- Dennis Johnson, John J. Millson, Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) 67 (1987), 48-106, Birkhäuser Boston, Boston, MA Zbl0664.53023MR900823
- Victor Kac, Èrnest Vinberg, Quasi-homogeneous cones, Mat. Zametki 1 (1967), 347-354 Zbl0163.16902MR208470
- Michael Kapovich, Convex projective structures on Gromov-Thurston manifolds, Geom. Topol. 11 (2007), 1777-1830 Zbl1130.53024MR2350468
- D. A. Každan, G. A. Margulis, A proof of Selberg’s hypothesis, Mat. Sb. (N.S.) 75 (117) (1968), 163-168 Zbl0241.22024MR223487
- Bas Lemmens, Cormac Walsh, Isometries of polyhedral Hilbert geometries, J. Topol. Anal. 3 (2011), 213-241 Zbl1220.53090MR2819195
- G. A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2 (1975), 21-34, Canad. Math. Congress, Montreal, Que. Zbl0336.57037MR492072
- Ludovic Marquis, Espace des modules marqués des surfaces projectives convexes de volume fini, Geom. Topol. 14 (2010), 2103-2149 Zbl1225.32022MR2740643
- Ludovic Marquis, Exemples de variétés projectives strictement convexes de volume fini en dimension quelconque, Enseign. Math. (2) 58 (2012), 3-47 Zbl1284.57021MR2985008
- Ludovic Marquis, Finite volume convex projective surface. (Surface projective convexe de volume fini.), Ann. Inst. Fourier 62 (2012), 325-392 Zbl1254.57015MR2986273
- V. D. Milman, A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed -dimensional space, Geometric aspects of functional analysis (1987–88) 1376 (1989), 64-104, Springer, Berlin Zbl0679.46012MR1008717
- M. S. Raghunathan, Discrete subgroups of Lie groups, (1972), Springer-Verlag, New York Zbl0254.22005MR507234
- Constantin Vernicos, Introduction aux géométries de Hilbert, Actes de Séminaire de Théorie Spectrale et Géométrie. Vol. 23. Année 2004–2005 23 (2005), 145-168, Univ. Grenoble I, Saint Zbl1100.53031MR2270228
- Jacques Vey, Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 641-665 Zbl0206.51302MR283720
- Hans Zassenhaus, Beweis eines Satzes über diskrete Gruppen., Abh. math. Sem. Hansische Univ. 12 (1938), 289-312 Zbl0023.01403
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.