Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations

Andreas Höring[1]

  • [1] Laboratoire de Mathématiques J.A. Dieudonné UMR 7351 CNRS Université de Nice Sophia-Antipolis 06108 Nice Cedex 02 (France)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 6, page 2465-2480
  • ISSN: 0373-0956

Abstract

top
Let X be a normal projective variety, and let A be an ample Cartier divisor on X . Suppose that X is not the projective space. We prove that the twisted cotangent sheaf Ω X A is generically nef with respect to the polarisation  A . As an application we prove a Kobayashi-Ochiai theorem for foliations: if T X is a foliation such that det i A , then i is at most the rank of .

How to cite

top

Höring, Andreas. "Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations." Annales de l’institut Fourier 64.6 (2014): 2465-2480. <http://eudml.org/doc/275630>.

@article{Höring2014,
abstract = {Let $X$ be a normal projective variety, and let $A$ be an ample Cartier divisor on $X$. Suppose that $X$ is not the projective space. We prove that the twisted cotangent sheaf $\Omega _X \otimes A$ is generically nef with respect to the polarisation $A$. As an application we prove a Kobayashi-Ochiai theorem for foliations: if $\mathcal\{F\} \subsetneq T_X$ is a foliation such that $\det \mathcal\{F\} \equiv i_\{\mathcal\{F\}\} A$, then $i_\{\mathcal\{F\}\}$ is at most the rank of $\mathcal\{F\}$.},
affiliation = {Laboratoire de Mathématiques J.A. Dieudonné UMR 7351 CNRS Université de Nice Sophia-Antipolis 06108 Nice Cedex 02 (France)},
author = {Höring, Andreas},
journal = {Annales de l’institut Fourier},
keywords = {Cotangent sheaf; foliations; Kobayashi-Ochiai theorem; cotangent sheaf},
language = {eng},
number = {6},
pages = {2465-2480},
publisher = {Association des Annales de l’institut Fourier},
title = {Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations},
url = {http://eudml.org/doc/275630},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Höring, Andreas
TI - Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2465
EP - 2480
AB - Let $X$ be a normal projective variety, and let $A$ be an ample Cartier divisor on $X$. Suppose that $X$ is not the projective space. We prove that the twisted cotangent sheaf $\Omega _X \otimes A$ is generically nef with respect to the polarisation $A$. As an application we prove a Kobayashi-Ochiai theorem for foliations: if $\mathcal{F} \subsetneq T_X$ is a foliation such that $\det \mathcal{F} \equiv i_{\mathcal{F}} A$, then $i_{\mathcal{F}}$ is at most the rank of $\mathcal{F}$.
LA - eng
KW - Cotangent sheaf; foliations; Kobayashi-Ochiai theorem; cotangent sheaf
UR - http://eudml.org/doc/275630
ER -

References

top
  1. M. Andreatta, Some remarks on the study of good contractions, Manuscripta Math. 87 (1995), 359-367 Zbl0860.14009MR1340353
  2. Marco Andreatta, Minimal model program with scaling and adjunction theory, Internat. J. Math. 24 (2013) Zbl1273.14030MR3045341
  3. Carolina Araujo, Stéphane Druel, On codimension 1 del Pezzo foliations on varieties with mild singularities, (2012) Zbl06375922
  4. Carolina Araujo, Stéphane Druel, On Fano foliations, Adv. Math. 238 (2013), 70-118 Zbl1282.14085MR3033631
  5. Carolina Araujo, Stéphane Druel, Sándor J. Kovács, Cohomological characterizations of projective spaces and hyperquadrics, Invent. Math. 174 (2008), 233-253 Zbl1162.14037MR2439607
  6. Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven, Compact complex surfaces, 4 (2004), Springer-Verlag, Berlin Zbl1036.14016MR2030225
  7. Mauro C. Beltrametti, Andrew J. Sommese, The adjunction theory of complex projective varieties, 16 (1995), Walter de Gruyter & Co., Berlin Zbl0845.14003MR1318687
  8. Fedor A. Bogomolov, Michael L. McQuillan, Rational curves on foliated varieties, (February 2001), 1-29 
  9. Olivier Debarre, Higher-dimensional algebraic geometry, (2001), Springer-Verlag, New York Zbl0978.14001MR1841091
  10. Jean-Pierre Demailly, Thomas Peternell, Michael Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), 295-345 Zbl0827.14027MR1257325
  11. Stéphane Druel, Caractérisation de l’espace projectif, Manuscripta Math. 115 (2004), 19-30 Zbl1070.14012MR2092774
  12. Hubert Flenner, Restrictions of semistable bundles on projective varieties, Comment. Math. Helv. 59 (1984), 635-650 Zbl0599.14015MR780080
  13. Takao Fujita, Remarks on quasi-polarized varieties, Nagoya Math. J. 115 (1989), 105-123 Zbl0699.14002MR1018086
  14. Tsuyoshi Fujiwara, Varieties of small Kodaira dimension whose cotangent bundles are semiample, Compositio Math. 84 (1992), 43-52 Zbl0763.14015MR1183561
  15. William Fulton, Intersection theory, 2 (1998), Springer-Verlag, Berlin Zbl0541.14005MR1644323
  16. Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York-Heidelberg Zbl0531.14001MR463157
  17. Andreas Höring, The sectional genus of quasi-polarised varieties, Arch. Math. (Basel) 95 (2010), 125-133 Zbl1198.14008MR2674248
  18. Andreas Höring, On a conjecture of Beltrametti and Sommese, J. Algebraic Geom. 21 (2012), 721-751 Zbl1253.14007MR2957694
  19. Andreas Höring, Carla Novelli, Mori contractions of maximal length, Publ. Res. Inst. Math. Sci. 49 (2013), 215-228 Zbl1262.14010MR3030002
  20. Stefan Kebekus, Luis Solá Conde, Matei Toma, Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom. 16 (2007), 65-81 Zbl1120.14011MR2257320
  21. Shoshichi Kobayashi, Takushiro Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31-47 Zbl0261.32013MR316745
  22. János Kollár, Singularities of the minimal model program, 200 (2013), Cambridge University Press, Cambridge Zbl1282.14028MR3057950
  23. János Kollár, Shigefumi Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003MR1658959
  24. Robert Lazarsfeld, Positivity in algebraic geometry. II, 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095472
  25. V. B. Mehta, A. Ramanathan, Semistable sheaves on projective varieties and their restriction to curves, Math. Ann. 258 (1981/82), 213-224 Zbl0473.14001MR649194
  26. Yoichi Miyaoka, Thomas Peternell, Geometry of higher-dimensional algebraic varieties, 26 (1997), Birkhäuser Verlag, Basel Zbl0865.14018MR1468476
  27. Matthieu Paris, Caractérisations des espaces projectifs et des quadriques, (2010) 
  28. J. M. Wahl, A cohomological characterization of P n , Invent. Math. 72 (1983), 315-322 Zbl0544.14013MR700774

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.