Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations
- [1] Laboratoire de Mathématiques J.A. Dieudonné UMR 7351 CNRS Université de Nice Sophia-Antipolis 06108 Nice Cedex 02 (France)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 6, page 2465-2480
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHöring, Andreas. "Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations." Annales de l’institut Fourier 64.6 (2014): 2465-2480. <http://eudml.org/doc/275630>.
@article{Höring2014,
abstract = {Let $X$ be a normal projective variety, and let $A$ be an ample Cartier divisor on $X$. Suppose that $X$ is not the projective space. We prove that the twisted cotangent sheaf $\Omega _X \otimes A$ is generically nef with respect to the polarisation $A$. As an application we prove a Kobayashi-Ochiai theorem for foliations: if $\mathcal\{F\} \subsetneq T_X$ is a foliation such that $\det \mathcal\{F\} \equiv i_\{\mathcal\{F\}\} A$, then $i_\{\mathcal\{F\}\}$ is at most the rank of $\mathcal\{F\}$.},
affiliation = {Laboratoire de Mathématiques J.A. Dieudonné UMR 7351 CNRS Université de Nice Sophia-Antipolis 06108 Nice Cedex 02 (France)},
author = {Höring, Andreas},
journal = {Annales de l’institut Fourier},
keywords = {Cotangent sheaf; foliations; Kobayashi-Ochiai theorem; cotangent sheaf},
language = {eng},
number = {6},
pages = {2465-2480},
publisher = {Association des Annales de l’institut Fourier},
title = {Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations},
url = {http://eudml.org/doc/275630},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Höring, Andreas
TI - Twisted cotangent sheaves and a Kobayashi-Ochiai theorem for foliations
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 6
SP - 2465
EP - 2480
AB - Let $X$ be a normal projective variety, and let $A$ be an ample Cartier divisor on $X$. Suppose that $X$ is not the projective space. We prove that the twisted cotangent sheaf $\Omega _X \otimes A$ is generically nef with respect to the polarisation $A$. As an application we prove a Kobayashi-Ochiai theorem for foliations: if $\mathcal{F} \subsetneq T_X$ is a foliation such that $\det \mathcal{F} \equiv i_{\mathcal{F}} A$, then $i_{\mathcal{F}}$ is at most the rank of $\mathcal{F}$.
LA - eng
KW - Cotangent sheaf; foliations; Kobayashi-Ochiai theorem; cotangent sheaf
UR - http://eudml.org/doc/275630
ER -
References
top- M. Andreatta, Some remarks on the study of good contractions, Manuscripta Math. 87 (1995), 359-367 Zbl0860.14009MR1340353
- Marco Andreatta, Minimal model program with scaling and adjunction theory, Internat. J. Math. 24 (2013) Zbl1273.14030MR3045341
- Carolina Araujo, Stéphane Druel, On codimension 1 del Pezzo foliations on varieties with mild singularities, (2012) Zbl06375922
- Carolina Araujo, Stéphane Druel, On Fano foliations, Adv. Math. 238 (2013), 70-118 Zbl1282.14085MR3033631
- Carolina Araujo, Stéphane Druel, Sándor J. Kovács, Cohomological characterizations of projective spaces and hyperquadrics, Invent. Math. 174 (2008), 233-253 Zbl1162.14037MR2439607
- Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, Antonius Van de Ven, Compact complex surfaces, 4 (2004), Springer-Verlag, Berlin Zbl1036.14016MR2030225
- Mauro C. Beltrametti, Andrew J. Sommese, The adjunction theory of complex projective varieties, 16 (1995), Walter de Gruyter & Co., Berlin Zbl0845.14003MR1318687
- Fedor A. Bogomolov, Michael L. McQuillan, Rational curves on foliated varieties, (February 2001), 1-29
- Olivier Debarre, Higher-dimensional algebraic geometry, (2001), Springer-Verlag, New York Zbl0978.14001MR1841091
- Jean-Pierre Demailly, Thomas Peternell, Michael Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), 295-345 Zbl0827.14027MR1257325
- Stéphane Druel, Caractérisation de l’espace projectif, Manuscripta Math. 115 (2004), 19-30 Zbl1070.14012MR2092774
- Hubert Flenner, Restrictions of semistable bundles on projective varieties, Comment. Math. Helv. 59 (1984), 635-650 Zbl0599.14015MR780080
- Takao Fujita, Remarks on quasi-polarized varieties, Nagoya Math. J. 115 (1989), 105-123 Zbl0699.14002MR1018086
- Tsuyoshi Fujiwara, Varieties of small Kodaira dimension whose cotangent bundles are semiample, Compositio Math. 84 (1992), 43-52 Zbl0763.14015MR1183561
- William Fulton, Intersection theory, 2 (1998), Springer-Verlag, Berlin Zbl0541.14005MR1644323
- Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York-Heidelberg Zbl0531.14001MR463157
- Andreas Höring, The sectional genus of quasi-polarised varieties, Arch. Math. (Basel) 95 (2010), 125-133 Zbl1198.14008MR2674248
- Andreas Höring, On a conjecture of Beltrametti and Sommese, J. Algebraic Geom. 21 (2012), 721-751 Zbl1253.14007MR2957694
- Andreas Höring, Carla Novelli, Mori contractions of maximal length, Publ. Res. Inst. Math. Sci. 49 (2013), 215-228 Zbl1262.14010MR3030002
- Stefan Kebekus, Luis Solá Conde, Matei Toma, Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom. 16 (2007), 65-81 Zbl1120.14011MR2257320
- Shoshichi Kobayashi, Takushiro Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31-47 Zbl0261.32013MR316745
- János Kollár, Singularities of the minimal model program, 200 (2013), Cambridge University Press, Cambridge Zbl1282.14028MR3057950
- János Kollár, Shigefumi Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003MR1658959
- Robert Lazarsfeld, Positivity in algebraic geometry. II, 49 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095472
- V. B. Mehta, A. Ramanathan, Semistable sheaves on projective varieties and their restriction to curves, Math. Ann. 258 (1981/82), 213-224 Zbl0473.14001MR649194
- Yoichi Miyaoka, Thomas Peternell, Geometry of higher-dimensional algebraic varieties, 26 (1997), Birkhäuser Verlag, Basel Zbl0865.14018MR1468476
- Matthieu Paris, Caractérisations des espaces projectifs et des quadriques, (2010)
- J. M. Wahl, A cohomological characterization of , Invent. Math. 72 (1983), 315-322 Zbl0544.14013MR700774
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.