Varieties of small Kodaira dimension whose cotangent bundles are semiample

Tsuyoshi Fujiwara

Compositio Mathematica (1992)

  • Volume: 84, Issue: 1, page 43-52
  • ISSN: 0010-437X

How to cite

top

Fujiwara, Tsuyoshi. "Varieties of small Kodaira dimension whose cotangent bundles are semiample." Compositio Mathematica 84.1 (1992): 43-52. <http://eudml.org/doc/90177>.

@article{Fujiwara1992,
author = {Fujiwara, Tsuyoshi},
journal = {Compositio Mathematica},
keywords = {classification of smooth varieties; semisimple cotangent bundle; Kodaira dimension; para-abelian variety},
language = {eng},
number = {1},
pages = {43-52},
publisher = {Kluwer Academic Publishers},
title = {Varieties of small Kodaira dimension whose cotangent bundles are semiample},
url = {http://eudml.org/doc/90177},
volume = {84},
year = {1992},
}

TY - JOUR
AU - Fujiwara, Tsuyoshi
TI - Varieties of small Kodaira dimension whose cotangent bundles are semiample
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 84
IS - 1
SP - 43
EP - 52
LA - eng
KW - classification of smooth varieties; semisimple cotangent bundle; Kodaira dimension; para-abelian variety
UR - http://eudml.org/doc/90177
ER -

References

top
  1. [1] J. Bertin and P. Teller, Invariants symetriques et fibrés vectoriels sur les courbes. Math. Ann.264 (1983) 423-436. Zbl0504.14011MR716258
  2. [2] T. Fujita, Semipositive line bundles. J. Fac. Sci. Univ. Tokyo30 (1983) 353-378. Zbl0561.32012MR722501
  3. [3] D. Gieseker, p-ample bundles and their Chern classes. Nagoya Math. J.43 (1971) 91-116. Zbl0221.14010MR296078
  4. [4] R. Hartshorne, Algebraic Geometry. Graduate Texts in Math. 52, Springer, 1977. Zbl0367.14001MR463157
  5. [5] S. Iitaka, On D-dimensions of algebraic varieties. J. Math. Soc. Japan23 (1971) 356-373. Zbl0212.53802MR285531
  6. [6] Y. Kawamata, Characterization of abelian varieties. Compositio Math.43 (1981) 253-276. Zbl0471.14022MR622451
  7. [7] K. Kodaira, On deformations of complex analytic structures I, II. Ann. Math.67 (1958) 328-466. Zbl0128.16901MR112154
  8. [8] K. Kodaira, On compact analytic surfaces II. Ann. Math.77 (1963) 563-626. Zbl0118.15802
  9. [9] I. Nakamura and K. Ueno, An addition formula for Kodaira dimensions of analytic fibre bundles whose fibres are Moišezon manifolds. J. Math. Soc. Japan25 (1973) 363-371. Zbl0254.32027MR322213
  10. [10] M. Reid, Bogomolov's theorem c21 ≤ 4c2. Intl. Symp. on Algebraic Geometry, Kyoto (1977) 623-642. Zbl0478.14003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.