Varieties of small Kodaira dimension whose cotangent bundles are semiample
Compositio Mathematica (1992)
- Volume: 84, Issue: 1, page 43-52
- ISSN: 0010-437X
Access Full Article
topHow to cite
topFujiwara, Tsuyoshi. "Varieties of small Kodaira dimension whose cotangent bundles are semiample." Compositio Mathematica 84.1 (1992): 43-52. <http://eudml.org/doc/90177>.
@article{Fujiwara1992,
author = {Fujiwara, Tsuyoshi},
journal = {Compositio Mathematica},
keywords = {classification of smooth varieties; semisimple cotangent bundle; Kodaira dimension; para-abelian variety},
language = {eng},
number = {1},
pages = {43-52},
publisher = {Kluwer Academic Publishers},
title = {Varieties of small Kodaira dimension whose cotangent bundles are semiample},
url = {http://eudml.org/doc/90177},
volume = {84},
year = {1992},
}
TY - JOUR
AU - Fujiwara, Tsuyoshi
TI - Varieties of small Kodaira dimension whose cotangent bundles are semiample
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 84
IS - 1
SP - 43
EP - 52
LA - eng
KW - classification of smooth varieties; semisimple cotangent bundle; Kodaira dimension; para-abelian variety
UR - http://eudml.org/doc/90177
ER -
References
top- [1] J. Bertin and P. Teller, Invariants symetriques et fibrés vectoriels sur les courbes. Math. Ann.264 (1983) 423-436. Zbl0504.14011MR716258
- [2] T. Fujita, Semipositive line bundles. J. Fac. Sci. Univ. Tokyo30 (1983) 353-378. Zbl0561.32012MR722501
- [3] D. Gieseker, p-ample bundles and their Chern classes. Nagoya Math. J.43 (1971) 91-116. Zbl0221.14010MR296078
- [4] R. Hartshorne, Algebraic Geometry. Graduate Texts in Math. 52, Springer, 1977. Zbl0367.14001MR463157
- [5] S. Iitaka, On D-dimensions of algebraic varieties. J. Math. Soc. Japan23 (1971) 356-373. Zbl0212.53802MR285531
- [6] Y. Kawamata, Characterization of abelian varieties. Compositio Math.43 (1981) 253-276. Zbl0471.14022MR622451
- [7] K. Kodaira, On deformations of complex analytic structures I, II. Ann. Math.67 (1958) 328-466. Zbl0128.16901MR112154
- [8] K. Kodaira, On compact analytic surfaces II. Ann. Math.77 (1963) 563-626. Zbl0118.15802
- [9] I. Nakamura and K. Ueno, An addition formula for Kodaira dimensions of analytic fibre bundles whose fibres are Moišezon manifolds. J. Math. Soc. Japan25 (1973) 363-371. Zbl0254.32027MR322213
- [10] M. Reid, Bogomolov's theorem c21 ≤ 4c2. Intl. Symp. on Algebraic Geometry, Kyoto (1977) 623-642. Zbl0478.14003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.