Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces
- [1] Department of Mathematics and Computer Science, Kagoshima University, 1-21-35 Koorimoto, Kagoshima 890-0065, Japan.
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 6, page 2199-2221
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMatsumura, Shin-ichi. "Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces." Annales de l’institut Fourier 63.6 (2013): 2199-2221. <http://eudml.org/doc/275657>.
@article{Matsumura2013,
abstract = {In this paper, we study relations between positivity of the curvature and the asymptotic behavior of the higher cohomology group for tensor powers of a holomorphic line bundle. The Andreotti-Grauert vanishing theorem asserts that partial positivity of the curvature implies asymptotic vanishing of certain higher cohomology groups. We investigate the converse implication of this theorem under various situations. For example, we consider the case where a line bundle is semi-ample or big. Moreover, we show the converse implication holds on a projective surface without any assumptions on a line bundle.},
affiliation = {Department of Mathematics and Computer Science, Kagoshima University, 1-21-35 Koorimoto, Kagoshima 890-0065, Japan.},
author = {Matsumura, Shin-ichi},
journal = {Annales de l’institut Fourier},
keywords = {Asymptotic cohomology groups; partial cohomology vanishing; $q$-positivity; hermitian metrics; Chern curvatures; asymptotic cohomology groups; -positivity; Hermitian metrics},
language = {eng},
number = {6},
pages = {2199-2221},
publisher = {Association des Annales de l’institut Fourier},
title = {Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces},
url = {http://eudml.org/doc/275657},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Matsumura, Shin-ichi
TI - Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 6
SP - 2199
EP - 2221
AB - In this paper, we study relations between positivity of the curvature and the asymptotic behavior of the higher cohomology group for tensor powers of a holomorphic line bundle. The Andreotti-Grauert vanishing theorem asserts that partial positivity of the curvature implies asymptotic vanishing of certain higher cohomology groups. We investigate the converse implication of this theorem under various situations. For example, we consider the case where a line bundle is semi-ample or big. Moreover, we show the converse implication holds on a projective surface without any assumptions on a line bundle.
LA - eng
KW - Asymptotic cohomology groups; partial cohomology vanishing; $q$-positivity; hermitian metrics; Chern curvatures; asymptotic cohomology groups; -positivity; Hermitian metrics
UR - http://eudml.org/doc/275657
ER -
References
top- A Andreotti, H. Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259 Zbl0106.05501MR150342
- D. Barlet, Convexité au voisinage d’un cycle, (french), Functions of several complex variables, IV (Sem. François Norguet, 1977–1979) (French) 807 (1980), 102-121, Springer, Berlin Zbl0434.32012MR592787
- S. Boucksom, Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup. (4) 37 (2004), 45-76 Zbl1054.32010MR2050205
- S. Boucksom, J. P. Demailly, M. Paun, Peternell T., The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension Zbl1267.32017
- J. P. Demailly, Champs magnétiques et inégalités de Morse pour la -cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), 189-229 Zbl0565.58017MR812325
- J. P. Demailly, Cohomology of q-convex spaces in top degrees, Math. Z 204 (1990), 283-295 Zbl0682.32017MR1055992
- J. P. Demailly, Holomorphic Morse inequalities and asymptotic cohomology groups: a tribute to Bernhard Riemann, Milan J. Math. 78 (2010), 265-277 Zbl1205.32017MR2684780
- J. P. Demailly, A converse to the Andreotti-Grauert theorem, Ann. Fac. Sci. Toulouse Math. (6) 20 (2011) Zbl1228.32020MR2858170
- J. P. Demailly, T. Peternell, M. Schneider, Holomorphic line bundles with partially vanishing cohomology, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) 9 (1996), 165-198, Bar-Ilan Univ Zbl0859.14005MR1360502
- L. Ein, R. Lazarsfeld, M. Musţǎ, M. Nakamaye, M. Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), 1701-1734 Zbl1127.14010MR2282673
- T. Fujita, Semipositive line bundles, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), 353-378 Zbl0561.32012MR722501
- H. Fuse, T. Ohsawa, On a curvature property of effective divisors and its application to sheaf cohomology, Publ. Res. Inst. Math. Sci. 45 (2009), 1033-1039 Zbl1190.32009MR2597128
- A. Küronya, Positivity on subvarieties and vanishing of higher cohomology Zbl1291.14018
- R. Lazarsfeld, Positivity in Algebraic Geometry I, 48 (2004), Springer Verlag, Berlin Zbl1093.14500MR2095471
- S. Matsumura, Restricted volumes and divisorial Zariski decompositions Zbl1277.14006
- S. Matsumura, On the curvature of holomorphic line bundles with partially vanishin cohomology, RIMS, Kôkyûroku, Potential theory and fiber spaces (2012), 155-169
- T. Ohsawa, Completeness of noncompact analytic spaces, Publ. Res. Inst. Math. Sci. 20 (1984), 683-692 Zbl0568.32008MR759689
- R. Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 257-286 Zbl0153.15401MR222334
- Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976/77), 89-100 Zbl0343.32014MR435447
- A. J. Sommese, Submanifolds of Abelian varieties, Math. Ann. 233 (1978), 229-256 Zbl0381.14007MR466647
- B. Totaro, Line bundles with partially vanishing cohomology Zbl1277.14007
- S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), 339-411 Zbl0369.53059MR480350
- O. Zariski, The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math. (2) 76 (1962), 560-615 Zbl0124.37001MR141668
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.