Divisorial Zariski decompositions on compact complex manifolds
Annales scientifiques de l'École Normale Supérieure (2004)
- Volume: 37, Issue: 1, page 45-76
- ISSN: 0012-9593
Access Full Article
topHow to cite
topBoucksom, Sébastien. "Divisorial Zariski decompositions on compact complex manifolds." Annales scientifiques de l'École Normale Supérieure 37.1 (2004): 45-76. <http://eudml.org/doc/82627>.
@article{Boucksom2004,
author = {Boucksom, Sébastien},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {1},
pages = {45-76},
publisher = {Elsevier},
title = {Divisorial Zariski decompositions on compact complex manifolds},
url = {http://eudml.org/doc/82627},
volume = {37},
year = {2004},
}
TY - JOUR
AU - Boucksom, Sébastien
TI - Divisorial Zariski decompositions on compact complex manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 1
SP - 45
EP - 76
LA - eng
UR - http://eudml.org/doc/82627
ER -
References
top- [1] Boucksom S., Le cône kählérien d'une variété hyperkählérienne, C. R. Acad. Sci. Paris Sér. I Math.333 (2001) 935-938. Zbl1068.32014MR1873811
- [2] Boucksom S., On the volume of a line bundle, math.AG/0201031. Zbl1101.14008
- [3] Cutkosky S.D., Zariski decomposition of divisors on algebraic varieties, Duke Math. J.53 (1986) 149-156. Zbl0604.14002MR835801
- [4] Demailly J.-P., Estimations L2pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup.15 (1982) 457-511. Zbl0507.32021
- [5] Demailly J.-P., Regularization of closed positive currents and intersection theory, J. Algebraic Geom.1 (1992) 361-409. Zbl0777.32016MR1158622
- [6] Demailly J.-P., Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proc. Symp. Pure Math.62 (2) (1997). Zbl0919.32014MR1492539
- [7] Demailly J.-P., Paun M., Numerical characterization of the Kähler cone of a compact Kähler manifold, math.AG/0105176.
- [8] Demailly J.-P., Peternell T., Schneider M., Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom.3 (1994) 295-345. Zbl0827.14027MR1257325
- [9] Demailly J.-P., Ein L., Lazarsfeld R., A subadditivity property of multiplier ideals, math.AG/0002035. Zbl1077.14516
- [10] Demailly J.-P., Peternell T., Schneider M., Pseudoeffective line bundles on compact Kähler manifolds, math.AG/0006205.
- [11] Fujita T., On Zariski problem, Proc. Japan Acad., Ser. A55 (1979) 106-110. Zbl0444.14026MR531454
- [12] Fujita T., Remarks on quasi-polarized varieties, Nagoya Math. J.115 (1989) 105-123. Zbl0699.14002MR1018086
- [13] Hartshorne R., Algebraic Geometry, GTM, vol. 52, Springer-Verlag, 1977. Zbl0367.14001MR463157
- [14] Huybrechts D., The Kähler cone of a compact hyperkähler manifold, math.AG/9909109.
- [15] Lamari A., Courants kählériens et surfaces compactes, Ann. Inst. Fourier49 (1999) 249-263. Zbl0926.32026MR1688140
- [16] Nakayama N., Zariski decomposition and abundance, preprint RIMS. MR2104208
- [17] Paun M., Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann.310 (1998) 411-421. Zbl1023.32014MR1612321
- [18] Siu Y.T., Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math.27 (1974) 53-156. Zbl0289.32003MR352516
- [19] Zariski O., The theorem of Riemann–Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math.76 (2) (1962) 560-615. Zbl0124.37001MR141668
Citations in EuDML Documents
top- Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, Mihnea Popa, Asymptotic invariants of base loci
- Robert Lazarsfeld, Mircea Mustață, Convex bodies associated to linear series
- Brian Lehmann, Algebraic bounds on analytic multiplier ideals
- Olivier Debarre, Classes de cohomologie positives dans les variétés kählériennes compactes
- Shin-ichi Matsumura, Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.