Divisorial Zariski decompositions on compact complex manifolds

Sébastien Boucksom

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 1, page 45-76
  • ISSN: 0012-9593

How to cite

top

Boucksom, Sébastien. "Divisorial Zariski decompositions on compact complex manifolds." Annales scientifiques de l'École Normale Supérieure 37.1 (2004): 45-76. <http://eudml.org/doc/82627>.

@article{Boucksom2004,
author = {Boucksom, Sébastien},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {1},
pages = {45-76},
publisher = {Elsevier},
title = {Divisorial Zariski decompositions on compact complex manifolds},
url = {http://eudml.org/doc/82627},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Boucksom, Sébastien
TI - Divisorial Zariski decompositions on compact complex manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 1
SP - 45
EP - 76
LA - eng
UR - http://eudml.org/doc/82627
ER -

References

top
  1. [1] Boucksom S., Le cône kählérien d'une variété hyperkählérienne, C. R. Acad. Sci. Paris Sér. I Math.333 (2001) 935-938. Zbl1068.32014MR1873811
  2. [2] Boucksom S., On the volume of a line bundle, math.AG/0201031. Zbl1101.14008
  3. [3] Cutkosky S.D., Zariski decomposition of divisors on algebraic varieties, Duke Math. J.53 (1986) 149-156. Zbl0604.14002MR835801
  4. [4] Demailly J.-P., Estimations L2pour l’opérateur ¯ d’un fibré vectoriel holomorphe semi-positif au dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup.15 (1982) 457-511. Zbl0507.32021
  5. [5] Demailly J.-P., Regularization of closed positive currents and intersection theory, J. Algebraic Geom.1 (1992) 361-409. Zbl0777.32016MR1158622
  6. [6] Demailly J.-P., Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proc. Symp. Pure Math.62 (2) (1997). Zbl0919.32014MR1492539
  7. [7] Demailly J.-P., Paun M., Numerical characterization of the Kähler cone of a compact Kähler manifold, math.AG/0105176. 
  8. [8] Demailly J.-P., Peternell T., Schneider M., Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom.3 (1994) 295-345. Zbl0827.14027MR1257325
  9. [9] Demailly J.-P., Ein L., Lazarsfeld R., A subadditivity property of multiplier ideals, math.AG/0002035. Zbl1077.14516
  10. [10] Demailly J.-P., Peternell T., Schneider M., Pseudoeffective line bundles on compact Kähler manifolds, math.AG/0006205. 
  11. [11] Fujita T., On Zariski problem, Proc. Japan Acad., Ser. A55 (1979) 106-110. Zbl0444.14026MR531454
  12. [12] Fujita T., Remarks on quasi-polarized varieties, Nagoya Math. J.115 (1989) 105-123. Zbl0699.14002MR1018086
  13. [13] Hartshorne R., Algebraic Geometry, GTM, vol. 52, Springer-Verlag, 1977. Zbl0367.14001MR463157
  14. [14] Huybrechts D., The Kähler cone of a compact hyperkähler manifold, math.AG/9909109. 
  15. [15] Lamari A., Courants kählériens et surfaces compactes, Ann. Inst. Fourier49 (1999) 249-263. Zbl0926.32026MR1688140
  16. [16] Nakayama N., Zariski decomposition and abundance, preprint RIMS. MR2104208
  17. [17] Paun M., Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann.310 (1998) 411-421. Zbl1023.32014MR1612321
  18. [18] Siu Y.T., Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math.27 (1974) 53-156. Zbl0289.32003MR352516
  19. [19] Zariski O., The theorem of Riemann–Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math.76 (2) (1962) 560-615. Zbl0124.37001MR141668

Citations in EuDML Documents

top
  1. Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, Mihnea Popa, Asymptotic invariants of base loci
  2. Robert Lazarsfeld, Mircea Mustață, Convex bodies associated to linear series
  3. Brian Lehmann, Algebraic bounds on analytic multiplier ideals
  4. Olivier Debarre, Classes de cohomologie positives dans les variétés kählériennes compactes
  5. Shin-ichi Matsumura, Asymptotic cohomology vanishing and a converse to the Andreotti-Grauert theorem on surfaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.