Cyclotomic quadratic forms

François Sigrist

Journal de théorie des nombres de Bordeaux (2000)

  • Volume: 12, Issue: 2, page 519-530
  • ISSN: 1246-7405

Abstract

top
Voronoï ’s algorithm is a method for obtaining the complete list of perfect n -dimensional quadratic forms. Its generalization to G -forms has the advantage of running in a lower-dimensional space, and furnishes a finite, and complete, classification of G -perfect forms ( G is a finite subgroup of G L ( n , ) ) . We study the standard, φ ( m ) -dimensional irreducible representation of the cyclic group C m of order m , and give the, often new, densest G -forms. Perfect cyclotomic forms are completely classified for φ ( m ) < 16 and for m = 17 . As a consequence, we obtain precise upper bounds for the Hermite invariant of cyclotomic forms in this range. These bounds are often better than the known or conjectural values of the Hermite constant for the corresponding dimensions ; this is indeed the case for m = 5 , 7 , 11 , 13 , 16 , 17 , 36 . The complete results can be taken from http://www.unine.ch/math.

How to cite

top

Sigrist, François. "Cyclotomic quadratic forms." Journal de théorie des nombres de Bordeaux 12.2 (2000): 519-530. <http://eudml.org/doc/248479>.

@article{Sigrist2000,
abstract = {Voronoï ’s algorithm is a method for obtaining the complete list of perfect $n$-dimensional quadratic forms. Its generalization to $G$-forms has the advantage of running in a lower-dimensional space, and furnishes a finite, and complete, classification of $G$-perfect forms ($G$ is a finite subgroup of $GL (n, \mathbb \{Z\}))$. We study the standard, $\phi (m)$-dimensional irreducible representation of the cyclic group $C_m$ of order $m$, and give the, often new, densest $G$-forms. Perfect cyclotomic forms are completely classified for $\phi (m) &lt; 16$ and for $m = 17$. As a consequence, we obtain precise upper bounds for the Hermite invariant of cyclotomic forms in this range. These bounds are often better than the known or conjectural values of the Hermite constant for the corresponding dimensions ; this is indeed the case for $m = 5,7,11,13,16,17,36$. The complete results can be taken from http://www.unine.ch/math.},
author = {Sigrist, François},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {cyclotomic quadratic forms; Voronoi's algorithm; complete classification of perfect cyclotomic forms; uper bounds; Hermite invariant of cyclotomic forms; Hermite constant},
language = {eng},
number = {2},
pages = {519-530},
publisher = {Université Bordeaux I},
title = {Cyclotomic quadratic forms},
url = {http://eudml.org/doc/248479},
volume = {12},
year = {2000},
}

TY - JOUR
AU - Sigrist, François
TI - Cyclotomic quadratic forms
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 2
SP - 519
EP - 530
AB - Voronoï ’s algorithm is a method for obtaining the complete list of perfect $n$-dimensional quadratic forms. Its generalization to $G$-forms has the advantage of running in a lower-dimensional space, and furnishes a finite, and complete, classification of $G$-perfect forms ($G$ is a finite subgroup of $GL (n, \mathbb {Z}))$. We study the standard, $\phi (m)$-dimensional irreducible representation of the cyclic group $C_m$ of order $m$, and give the, often new, densest $G$-forms. Perfect cyclotomic forms are completely classified for $\phi (m) &lt; 16$ and for $m = 17$. As a consequence, we obtain precise upper bounds for the Hermite invariant of cyclotomic forms in this range. These bounds are often better than the known or conjectural values of the Hermite constant for the corresponding dimensions ; this is indeed the case for $m = 5,7,11,13,16,17,36$. The complete results can be taken from http://www.unine.ch/math.
LA - eng
KW - cyclotomic quadratic forms; Voronoi's algorithm; complete classification of perfect cyclotomic forms; uper bounds; Hermite invariant of cyclotomic forms; Hermite constant
UR - http://eudml.org/doc/248479
ER -

References

top
  1. [Ba-Ba] C. Bachoc, C. Batut, Etude algorithmique de réseaux construits avec la forme trace. J. Exp. Math.1 (1992), 183-190. Zbl0787.11024MR1203873
  2. [Bay-M] E. Bayer-Fluckiger, J. Martinet, Formes quadratiques liées aux algèbres semi-simples. J. reine angew. Math.451 (1994), 51-69. Zbl0801.11020MR1277294
  3. [B-M] A.-M. Bergé, J. Martinet, Réseaux extrêmes pour un groupe d'automorphismes. Astérisque198-200 (1992), 41-66. Zbl0753.11026
  4. [B-M-S] A.-M. Bergé, J. Martinet, F. Sigrist, Une généralisation de l'algorithme de Voronoï pour les formes quadratiques. Astérisque209 (1992), 137-158. Zbl0812.11037
  5. [C-S] J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices, and Groups. Springer-Verlag (1992). Zbl0785.11036
  6. [JCa] D.-O. Jaquet-Chiffelle, Enumération complète des classes de formes parfaites en dimension 7. Ann. Inst. Fourier43 (1993), 21-55. Zbl0769.11028MR1209694
  7. [JCb] D.-O. Jaquet-Chiffelle, Trois théorèmes de finitude pour les G-formes. J. Théor. Nombres Bordeaux7 (1995), 165-176. Zbl0843.11032MR1413575
  8. [Mar] J. Martinet, Les réseaux parfaits des espaces euclidiens. Masson (1996). Zbl0869.11056MR1434803
  9. [Vor] G. Voronoï, Sur quelques propriétés des formes quadratiques positives parfaites. J. reine angew. Math.133 (1908), 97-178. Zbl38.0261.01JFM38.0261.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.