Heights and regulators of number fields and elliptic curves
- [1] Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark, and IMB, Université de Bordeaux, 351 cours de la Libération, 33405 Talence.
Publications mathématiques de Besançon (2014)
- Issue: 2, page 47-62
- ISSN: 1958-7236
Access Full Article
topAbstract
topHow to cite
topPazuki, Fabien. "Heights and regulators of number fields and elliptic curves." Publications mathématiques de Besançon (2014): 47-62. <http://eudml.org/doc/275738>.
@article{Pazuki2014,
abstract = {We compare general inequalities between invariants of number fields and invariants of elliptic curves over number fields. On the number field side, we remark that there is only a finite number of non-CM number fields with bounded regulator. On the elliptic curve side, assuming the height conjecture of Lang and Silverman, we obtain a Northcott property for the regulator on the set of elliptic curves with dense rational points over a number field. This amounts to say that the arithmetic of CM fields is similar, with respect to the invariants considered here, to the arithmetic of elliptic curves over a number field having a non Zariski dense Mordell-Weil group, i.e. with rank zero.},
affiliation = {Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark, and IMB, Université de Bordeaux, 351 cours de la Libération, 33405 Talence.},
author = {Pazuki, Fabien},
journal = {Publications mathématiques de Besançon},
keywords = {Heights; abelian varieties; regulators; Mordell-Weil},
language = {eng},
number = {2},
pages = {47-62},
publisher = {Presses universitaires de Franche-Comté},
title = {Heights and regulators of number fields and elliptic curves},
url = {http://eudml.org/doc/275738},
year = {2014},
}
TY - JOUR
AU - Pazuki, Fabien
TI - Heights and regulators of number fields and elliptic curves
JO - Publications mathématiques de Besançon
PY - 2014
PB - Presses universitaires de Franche-Comté
IS - 2
SP - 47
EP - 62
AB - We compare general inequalities between invariants of number fields and invariants of elliptic curves over number fields. On the number field side, we remark that there is only a finite number of non-CM number fields with bounded regulator. On the elliptic curve side, assuming the height conjecture of Lang and Silverman, we obtain a Northcott property for the regulator on the set of elliptic curves with dense rational points over a number field. This amounts to say that the arithmetic of CM fields is similar, with respect to the invariants considered here, to the arithmetic of elliptic curves over a number field having a non Zariski dense Mordell-Weil group, i.e. with rank zero.
LA - eng
KW - Heights; abelian varieties; regulators; Mordell-Weil
UR - http://eudml.org/doc/275738
ER -
References
top- Autissier, P., Un lemme matriciel effectif. Mathematische Zeitschrift 273 (2013), p. 355-361. Zbl1259.14025MR3010164
- Bergé, A.-M. and Martinet, J., Sur les minorations géométriques des régulateurs. Séminaire de Théorie des Nombres, Paris 1987–88, Progr. Math., Birkhäuser Boston, Boston, MA, 81 (1990), 23–50. Zbl0699.12014MR1042763
- Chai, C.-L., Néron models for semiabelian varieties: congruence and change of base field. Asian J. Math. 4 (2000), 715–736. Zbl1100.14511MR1870655
- Cohen, H. and Pazuki, F., Elementary 3-descent with a 3-isogeny. Acta Arith. 140.4 (2009), 369–404. Zbl1253.11063MR2570111
- Cornell, G. et Silverman, J. H. (editors), Arithmetic geometry. Springer-Verlag (1986). Zbl0596.00007MR861969
- Cusick, T. W., Lower bounds for regulators. Noordwijkerhout 1983 Proceedings, Lect. Notes Math. 1068 (1984), 63–73. Zbl0549.12003MR756083
- Cusick, T. W., The regulator spectrum for totally real cubic fields. Monat. Math.112.3 (1991), 217–220. Zbl0736.11063MR1139098
- Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), 349–366. Zbl0588.14026MR718935
- Friedman, E., Analytic formulas for the regulator of a number field. Invent. Math. 98 (1989), 599–622. Zbl0694.12006MR1022309
- Friedman, E. and Skoruppa, N.-P., Relative regulators of number fields. Invent. Math. 135 (1999), 115–144. Zbl0945.11022MR1664697
- Gaudron, E. et Rémond, G., Théorème des périodes et degrés minimaux d’isogénies. Comment. Math. Helvet. 89.2 (2014), 343–403. Zbl1297.11058MR3225452
- Gaudron, E. and Rémond, G., Polarisations et isogénies. Duke Math. (To appear, 2014). Zbl1303.11068MR3248722
- Hindry, M., Why is it difficult to compute the Mordell-Weil group? Diophantine geometry, CRM Series, Ed. Norm., Pisa 4 (2007), 197–219. Zbl1219.11099MR2349656
- Hindry, M. and Silverman, J., The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), 419–450. Zbl0657.14018MR948108
- Liu, Q., Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics, Oxford Science Publications 6 (2002). Zbl1103.14001MR1917232
- Neukirch, J., Algebraic number theory. Grundlehren der Mathematischen Wissenschaften, Springer-Verlag 322 (1999). Zbl0956.11021MR1697859
- Odlyzko, A. M., Lower bounds for discriminants of number fields. II. Tôhoku Math. J. 29.2 (1977), 209–216. Zbl0362.12005MR441918
- Odlyzko, A. M., Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Sém. Théor. Nombres Bordeaux 2.2.1 (1990), 119–141. Zbl0722.11054MR1061762
- Pazuki, F., Remarques sur une conjecture de Lang. Journal de Théorie des Nombres de Bordeaux 22 no.1 (2010), 161–179. Zbl1268.11089MR2675878
- Pazuki, F., Theta height and Faltings height. Bull. Soc. Math. France 140.1 (2012), 19–49. Zbl1245.14029MR2903770
- Remak, R., Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers. Compositio Math. 10 (1952), 245–285. Zbl0047.27202MR54641
- Rémond, G., Inégalité de Vojta généralisée. Bull. Soc. Math. France 133.4 (2005), 459–495. Zbl1136.11043MR2233693
- Rémond, G., Nombre de points rationnels des courbes. Proc. Lond. Math. Soc. 101.3 (2010), 759–794. Zbl1210.11073MR2734960
- Samuel, P., Théorie algébrique des nombres. Hermann, Paris, édition revue et corrigée (2003). Zbl0239.12001
- Grothendieck, A., Groupes de monodromie en géométrie algébrique. SGA 7.1, Lecture Notes in Mathematics, Springer-Verlag, 288 (1972). Zbl0237.00013MR354656
- Serre, J.-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972), 259–331. Zbl0235.14012MR387283
- Silverberg, A. and Zarhin, Yu., Semistable reduction and torsion subgroups of abelian varieties. Ann. Inst. Fourier 45 (1995), 403–420. Zbl0818.14017MR1343556
- Silverman, J. H., Arithmetic of elliptic curves. Springer GTM 106 (1986), second printing of the first edition. Zbl0585.14026MR817210
- Silverman, J. H., Lower bounds for height functions. Duke Math. J. 51 (1984), 395–403. Zbl0579.14035MR747871
- Silverman, J. H., An inequality relating the regulator and the discriminant of a number field. Journal of Number Theory 19.3 (1984), 437–442. Zbl0552.12003MR769793
- Washington, L., Introduction to cyclotomic fields. Springer, GTM 83 (1997), second edition. Zbl0966.11047MR1421575
- Zimmert, R., Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung. Invent. Math. 62.3 (1981), 367–380. Zbl0456.12003MR604833
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.