Heights and regulators of number fields and elliptic curves

Fabien Pazuki[1]

  • [1] Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark, and IMB, Université de Bordeaux, 351 cours de la Libération, 33405 Talence.

Publications mathématiques de Besançon (2014)

  • Issue: 2, page 47-62
  • ISSN: 1958-7236

Abstract

top
We compare general inequalities between invariants of number fields and invariants of elliptic curves over number fields. On the number field side, we remark that there is only a finite number of non-CM number fields with bounded regulator. On the elliptic curve side, assuming the height conjecture of Lang and Silverman, we obtain a Northcott property for the regulator on the set of elliptic curves with dense rational points over a number field. This amounts to say that the arithmetic of CM fields is similar, with respect to the invariants considered here, to the arithmetic of elliptic curves over a number field having a non Zariski dense Mordell-Weil group, i.e. with rank zero.

How to cite

top

Pazuki, Fabien. "Heights and regulators of number fields and elliptic curves." Publications mathématiques de Besançon (2014): 47-62. <http://eudml.org/doc/275738>.

@article{Pazuki2014,
abstract = {We compare general inequalities between invariants of number fields and invariants of elliptic curves over number fields. On the number field side, we remark that there is only a finite number of non-CM number fields with bounded regulator. On the elliptic curve side, assuming the height conjecture of Lang and Silverman, we obtain a Northcott property for the regulator on the set of elliptic curves with dense rational points over a number field. This amounts to say that the arithmetic of CM fields is similar, with respect to the invariants considered here, to the arithmetic of elliptic curves over a number field having a non Zariski dense Mordell-Weil group, i.e. with rank zero.},
affiliation = {Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark, and IMB, Université de Bordeaux, 351 cours de la Libération, 33405 Talence.},
author = {Pazuki, Fabien},
journal = {Publications mathématiques de Besançon},
keywords = {Heights; abelian varieties; regulators; Mordell-Weil},
language = {eng},
number = {2},
pages = {47-62},
publisher = {Presses universitaires de Franche-Comté},
title = {Heights and regulators of number fields and elliptic curves},
url = {http://eudml.org/doc/275738},
year = {2014},
}

TY - JOUR
AU - Pazuki, Fabien
TI - Heights and regulators of number fields and elliptic curves
JO - Publications mathématiques de Besançon
PY - 2014
PB - Presses universitaires de Franche-Comté
IS - 2
SP - 47
EP - 62
AB - We compare general inequalities between invariants of number fields and invariants of elliptic curves over number fields. On the number field side, we remark that there is only a finite number of non-CM number fields with bounded regulator. On the elliptic curve side, assuming the height conjecture of Lang and Silverman, we obtain a Northcott property for the regulator on the set of elliptic curves with dense rational points over a number field. This amounts to say that the arithmetic of CM fields is similar, with respect to the invariants considered here, to the arithmetic of elliptic curves over a number field having a non Zariski dense Mordell-Weil group, i.e. with rank zero.
LA - eng
KW - Heights; abelian varieties; regulators; Mordell-Weil
UR - http://eudml.org/doc/275738
ER -

References

top
  1. Autissier, P., Un lemme matriciel effectif. Mathematische Zeitschrift 273 (2013), p. 355-361. Zbl1259.14025MR3010164
  2. Bergé, A.-M. and Martinet, J., Sur les minorations géométriques des régulateurs. Séminaire de Théorie des Nombres, Paris 1987–88, Progr. Math., Birkhäuser Boston, Boston, MA, 81 (1990), 23–50. Zbl0699.12014MR1042763
  3. Chai, C.-L., Néron models for semiabelian varieties: congruence and change of base field. Asian J. Math. 4 (2000), 715–736. Zbl1100.14511MR1870655
  4. Cohen, H. and Pazuki, F., Elementary 3-descent with a 3-isogeny. Acta Arith. 140.4 (2009), 369–404. Zbl1253.11063MR2570111
  5. Cornell, G. et Silverman, J. H. (editors), Arithmetic geometry. Springer-Verlag (1986). Zbl0596.00007MR861969
  6. Cusick, T. W., Lower bounds for regulators. Noordwijkerhout 1983 Proceedings, Lect. Notes Math. 1068 (1984), 63–73. Zbl0549.12003MR756083
  7. Cusick, T. W., The regulator spectrum for totally real cubic fields. Monat. Math.112.3 (1991), 217–220. Zbl0736.11063MR1139098
  8. Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), 349–366. Zbl0588.14026MR718935
  9. Friedman, E., Analytic formulas for the regulator of a number field. Invent. Math. 98 (1989), 599–622. Zbl0694.12006MR1022309
  10. Friedman, E. and Skoruppa, N.-P., Relative regulators of number fields. Invent. Math. 135 (1999), 115–144. Zbl0945.11022MR1664697
  11. Gaudron, E. et Rémond, G., Théorème des périodes et degrés minimaux d’isogénies. Comment. Math. Helvet. 89.2 (2014), 343–403. Zbl1297.11058MR3225452
  12. Gaudron, E. and Rémond, G., Polarisations et isogénies. Duke Math. (To appear, 2014). Zbl1303.11068MR3248722
  13. Hindry, M., Why is it difficult to compute the Mordell-Weil group? Diophantine geometry, CRM Series, Ed. Norm., Pisa 4 (2007), 197–219. Zbl1219.11099MR2349656
  14. Hindry, M. and Silverman, J., The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), 419–450. Zbl0657.14018MR948108
  15. Liu, Q., Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics, Oxford Science Publications 6 (2002). Zbl1103.14001MR1917232
  16. Neukirch, J., Algebraic number theory. Grundlehren der Mathematischen Wissenschaften, Springer-Verlag 322 (1999). Zbl0956.11021MR1697859
  17. Odlyzko, A. M., Lower bounds for discriminants of number fields. II. Tôhoku Math. J. 29.2 (1977), 209–216. Zbl0362.12005MR441918
  18. Odlyzko, A. M., Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Sém. Théor. Nombres Bordeaux 2.2.1 (1990), 119–141. Zbl0722.11054MR1061762
  19. Pazuki, F., Remarques sur une conjecture de Lang. Journal de Théorie des Nombres de Bordeaux 22 no.1 (2010), 161–179. Zbl1268.11089MR2675878
  20. Pazuki, F., Theta height and Faltings height. Bull. Soc. Math. France 140.1 (2012), 19–49. Zbl1245.14029MR2903770
  21. Remak, R., Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers. Compositio Math. 10 (1952), 245–285. Zbl0047.27202MR54641
  22. Rémond, G., Inégalité de Vojta généralisée. Bull. Soc. Math. France 133.4 (2005), 459–495. Zbl1136.11043MR2233693
  23. Rémond, G., Nombre de points rationnels des courbes. Proc. Lond. Math. Soc. 101.3 (2010), 759–794. Zbl1210.11073MR2734960
  24. Samuel, P., Théorie algébrique des nombres. Hermann, Paris, édition revue et corrigée (2003). Zbl0239.12001
  25. Grothendieck, A., Groupes de monodromie en géométrie algébrique. SGA 7.1, Lecture Notes in Mathematics, Springer-Verlag, 288 (1972). Zbl0237.00013MR354656
  26. Serre, J.-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972), 259–331. Zbl0235.14012MR387283
  27. Silverberg, A. and Zarhin, Yu., Semistable reduction and torsion subgroups of abelian varieties. Ann. Inst. Fourier 45 (1995), 403–420. Zbl0818.14017MR1343556
  28. Silverman, J. H., Arithmetic of elliptic curves. Springer GTM 106 (1986), second printing of the first edition. Zbl0585.14026MR817210
  29. Silverman, J. H., Lower bounds for height functions. Duke Math. J. 51 (1984), 395–403. Zbl0579.14035MR747871
  30. Silverman, J. H., An inequality relating the regulator and the discriminant of a number field. Journal of Number Theory 19.3 (1984), 437–442. Zbl0552.12003MR769793
  31. Washington, L., Introduction to cyclotomic fields. Springer, GTM 83 (1997), second edition. Zbl0966.11047MR1421575
  32. Zimmert, R., Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung. Invent. Math. 62.3 (1981), 367–380. Zbl0456.12003MR604833

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.