Entrelacements de semi-groupes provenant de paires de Gelfand
ESAIM: Probability and Statistics (2011)
- Volume: 15, page S2-S10
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topBiane, Philippe. "Entrelacements de semi-groupes provenant de paires de Gelfand." ESAIM: Probability and Statistics 15 (2011): S2-S10. <http://eudml.org/doc/277154>.
@article{Biane2011,
abstract = {On donne des exemples d'entrelacements entre semi-groupes markoviens obtenus au moyen de considérations de théorie des groupes sur les paires de Gelfand},
author = {Biane, Philippe},
journal = {ESAIM: Probability and Statistics},
keywords = {entrelacement de semi-groupes de noyaux markoviens; paires de Gelfand},
language = {fre},
pages = {S2-S10},
publisher = {EDP-Sciences},
title = {Entrelacements de semi-groupes provenant de paires de Gelfand},
url = {http://eudml.org/doc/277154},
volume = {15},
year = {2011},
}
TY - JOUR
AU - Biane, Philippe
TI - Entrelacements de semi-groupes provenant de paires de Gelfand
JO - ESAIM: Probability and Statistics
PY - 2011
PB - EDP-Sciences
VL - 15
SP - S2
EP - S10
AB - On donne des exemples d'entrelacements entre semi-groupes markoviens obtenus au moyen de considérations de théorie des groupes sur les paires de Gelfand
LA - fre
KW - entrelacement de semi-groupes de noyaux markoviens; paires de Gelfand
UR - http://eudml.org/doc/277154
ER -
References
top- [1] P. Biane, Quantum random walk on the dual of SU(n). Probab. Theory Relat. Fields89 (1991) 117–129. Zbl0746.46058MR1109477
- [2] P. Biane, Minuscule weights and random walks on lattices, Quantum probability and related topics, QP-PQ VII. World Scientific Publishing, River Edge, NJ (1992) 51–65. Zbl0787.60089MR1186654
- [3] P. Biane, Intertwining of Markov semi-groups, some examples. in Séminaire de Probabilités XXIX. Lecture Notes in Math. 1613, Springer, Berlin (1995) 30–36. Zbl0831.47032MR1459446
- [4] P. Biane, Quantum Markov processes and group representations, Quantum probability communications, QP-PQ X. World Scientific Publishing, River Edge, NJ (1998) 53–72. MR1689474
- [5] P. Biane, Le théorème de Pitman, le groupe quantique SUq(2), et une question de P.A. Meyer, In memoriam Paul-André Meyer, in Séminaire de Probabilités XXXIX. Lecture Notes in Math. 1874, Springer, Berlin (2006) 61–75. Zbl1117.81082MR2276889
- [6] P. Carmona, F. Petit and M. Yor, Beta-gamma random variables and intertwining relations between certain Markov processes. Rev. Mat. Iberoamericana14 (1998) 311–367. Zbl0919.60074MR1654531
- [7] F.M. Choucroun, Analyse harmonique des groupes d'automorphismes d'arbres de Bruhat-Tits. Mém. Soc. Math. France (N.S.) 58 (1994) Zbl0840.43019
- [8] A. Connes, Noncommutative geometry. Academic Press, Inc., San Diego, CA (1994). Zbl0818.46076MR1303779
- [9] J. Dubédat, Reflected planar Brownian motions, intertwining relations and crossing probabilities. Ann. Inst. H. Poincaré Probab. Statist.40 (2004) 539–552. Zbl1054.60085MR2086013
- [10] J. Faraut, Analyse sur les paires de Gelfand, in Analyse harmonique. Les Cours du CIMPA (1982).
- [11] J. Faraut and K. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier (Grenoble) 24 (1974) 171–217. Zbl0265.43013MR365042
- [12] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math.139 (1977) 95–153. Zbl0366.22010MR461589
- [13] F. Hirsch and M. Yor, Fractional intertwinings between two Markov semi-groups. Potential Anal.31 (2009) 133–146. Zbl1175.26010MR2520721
- [14] H. Matsumoto and M. Yor, An analogue of Pitman's 2M – X theorem for exponential Wiener functionals. Part I. A time-inversion approach. Nagoya Math. J. 159 (2000) 125–166. Zbl0963.60076MR1783567
- [15] N. O'Connell, Directed polymers and the quantum Toda lattice. arXiv:0910.0069 Zbl1245.82091
- [16] K.R. Parthasarathy, An introduction to quantum stochastic calculus. Monographs Math. 85, Birkhäuser Verlag, Basel (1992). Zbl0751.60046MR3012668
- [17] J.W. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab.7 (1975) 511–526. Zbl0332.60055MR375485
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.