Entrelacements de semi-groupes provenant de paires de Gelfand

Philippe Biane

ESAIM: Probability and Statistics (2011)

  • Volume: 15, page S2-S10
  • ISSN: 1292-8100

Abstract

top
On donne des exemples d'entrelacements entre semi-groupes markoviens obtenus au moyen de considérations de théorie des groupes sur les paires de Gelfand

How to cite

top

Biane, Philippe. "Entrelacements de semi-groupes provenant de paires de Gelfand." ESAIM: Probability and Statistics 15 (2011): S2-S10. <http://eudml.org/doc/277154>.

@article{Biane2011,
abstract = {On donne des exemples d'entrelacements entre semi-groupes markoviens obtenus au moyen de considérations de théorie des groupes sur les paires de Gelfand},
author = {Biane, Philippe},
journal = {ESAIM: Probability and Statistics},
keywords = {entrelacement de semi-groupes de noyaux markoviens; paires de Gelfand},
language = {fre},
pages = {S2-S10},
publisher = {EDP-Sciences},
title = {Entrelacements de semi-groupes provenant de paires de Gelfand},
url = {http://eudml.org/doc/277154},
volume = {15},
year = {2011},
}

TY - JOUR
AU - Biane, Philippe
TI - Entrelacements de semi-groupes provenant de paires de Gelfand
JO - ESAIM: Probability and Statistics
PY - 2011
PB - EDP-Sciences
VL - 15
SP - S2
EP - S10
AB - On donne des exemples d'entrelacements entre semi-groupes markoviens obtenus au moyen de considérations de théorie des groupes sur les paires de Gelfand
LA - fre
KW - entrelacement de semi-groupes de noyaux markoviens; paires de Gelfand
UR - http://eudml.org/doc/277154
ER -

References

top
  1. [1] P. Biane, Quantum random walk on the dual of SU(n). Probab. Theory Relat. Fields89 (1991) 117–129. Zbl0746.46058MR1109477
  2. [2] P. Biane, Minuscule weights and random walks on lattices, Quantum probability and related topics, QP-PQ VII. World Scientific Publishing, River Edge, NJ (1992) 51–65. Zbl0787.60089MR1186654
  3. [3] P. Biane, Intertwining of Markov semi-groups, some examples. in Séminaire de Probabilités XXIX. Lecture Notes in Math. 1613, Springer, Berlin (1995) 30–36. Zbl0831.47032MR1459446
  4. [4] P. Biane, Quantum Markov processes and group representations, Quantum probability communications, QP-PQ X. World Scientific Publishing, River Edge, NJ (1998) 53–72. MR1689474
  5. [5] P. Biane, Le théorème de Pitman, le groupe quantique SUq(2), et une question de P.A. Meyer, In memoriam Paul-André Meyer, in Séminaire de Probabilités XXXIX. Lecture Notes in Math. 1874, Springer, Berlin (2006) 61–75. Zbl1117.81082MR2276889
  6. [6] P. Carmona, F. Petit and M. Yor, Beta-gamma random variables and intertwining relations between certain Markov processes. Rev. Mat. Iberoamericana14 (1998) 311–367. Zbl0919.60074MR1654531
  7. [7] F.M. Choucroun, Analyse harmonique des groupes d'automorphismes d'arbres de Bruhat-Tits. Mém. Soc. Math. France (N.S.) 58 (1994) Zbl0840.43019
  8. [8] A. Connes, Noncommutative geometry. Academic Press, Inc., San Diego, CA (1994). Zbl0818.46076MR1303779
  9. [9] J. Dubédat, Reflected planar Brownian motions, intertwining relations and crossing probabilities. Ann. Inst. H. Poincaré Probab. Statist.40 (2004) 539–552. Zbl1054.60085MR2086013
  10. [10] J. Faraut, Analyse sur les paires de Gelfand, in Analyse harmonique. Les Cours du CIMPA (1982). 
  11. [11] J. Faraut and K. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier (Grenoble) 24 (1974) 171–217. Zbl0265.43013MR365042
  12. [12] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math.139 (1977) 95–153. Zbl0366.22010MR461589
  13. [13] F. Hirsch and M. Yor, Fractional intertwinings between two Markov semi-groups. Potential Anal.31 (2009) 133–146. Zbl1175.26010MR2520721
  14. [14] H. Matsumoto and M. Yor, An analogue of Pitman's 2M – X theorem for exponential Wiener functionals. Part I. A time-inversion approach. Nagoya Math. J. 159 (2000) 125–166. Zbl0963.60076MR1783567
  15. [15] N. O'Connell, Directed polymers and the quantum Toda lattice. arXiv:0910.0069 Zbl1245.82091
  16. [16] K.R. Parthasarathy, An introduction to quantum stochastic calculus. Monographs Math. 85, Birkhäuser Verlag, Basel (1992). Zbl0751.60046MR3012668
  17. [17] J.W. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab.7 (1975) 511–526. Zbl0332.60055MR375485

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.