Lattice of ℤ-module

Yuichi Futa; Yasunari Shidama

Formalized Mathematics (2016)

  • Volume: 24, Issue: 1, page 49-68
  • ISSN: 1426-2630

Abstract

top
In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].

How to cite

top

Yuichi Futa, and Yasunari Shidama. "Lattice of ℤ-module." Formalized Mathematics 24.1 (2016): 49-68. <http://eudml.org/doc/286765>.

@article{YuichiFuta2016,
abstract = {In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].},
author = {Yuichi Futa, Yasunari Shidama},
journal = {Formalized Mathematics},
keywords = {ℤ-lattice; Gram matrix; integral ℤ-lattice; positive definite ℤ-lattice; -lattice; integral -lattice; positive definite -lattice},
language = {eng},
number = {1},
pages = {49-68},
title = {Lattice of ℤ-module},
url = {http://eudml.org/doc/286765},
volume = {24},
year = {2016},
}

TY - JOUR
AU - Yuichi Futa
AU - Yasunari Shidama
TI - Lattice of ℤ-module
JO - Formalized Mathematics
PY - 2016
VL - 24
IS - 1
SP - 49
EP - 68
AB - In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].
LA - eng
KW - ℤ-lattice; Gram matrix; integral ℤ-lattice; positive definite ℤ-lattice; -lattice; integral -lattice; positive definite -lattice
UR - http://eudml.org/doc/286765
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990. 
  2. [2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3): 537-541, 1990. 
  3. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  5. [5] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17. Zbl06512423
  6. [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  7. [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990. 
  8. [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  9. [9] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013. 
  10. [10] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. ℤ-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z. Zbl1276.94012
  11. [11] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of ℤ-module. Formalized Mathematics, 20(3):205-214, 2012. doi:10.2478/v10037-012-0024-y. Zbl06213839
  12. [12] Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, and Yasunari Shidama. Torsion ℤ-module and torsion-free ℤ-module. Formalized Mathematics, 22(4):277-289, 2014. doi:10.2478/forma-2014-0028. Zbl1316.13012
  13. [13] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Matrix of ℤ-module. Formalized Mathematics, 23(1):29-49, 2015. doi:10.2478/forma-2015-0003. Zbl1317.11037
  14. [14] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 1982. 
  15. [15] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective. The International Series in Engineering and Computer Science, 2002. Zbl1140.94010
  16. [16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990. 
  17. [17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.