A geometrically nonlinear analysis of laminated composite plates using a shear deformation theory

Giacinto Porco; Giuseppe Spadea; Raffaele Zinno

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1989)

  • Volume: 83, Issue: 1, page 159-176
  • ISSN: 1120-6330

Abstract

top
A shear deformation theory is developed to analyse the geometrically nonlinear behaviour of layered composite plates under transverse loads. The theory accounts for the transverse shear (as in the Reissner Mindlin plate theory) and large rotations (in the sense of the von Karman theory) suitable for simulating the behaviour of moderately thick plates. Square and rectangular plates are considered: the numerical results are obtained by a finite element computational procedure and are given for various boundary and loading conditions, a/b ratios, stacking and orientation of layers and material properties (E_{1}/E_{2} ratio, E_{1}/G ratio, etc.).

How to cite

top

Porco, Giacinto, Spadea, Giuseppe, and Zinno, Raffaele. "A geometrically nonlinear analysis of laminated composite plates using a shear deformation theory." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 83.1 (1989): 159-176. <http://eudml.org/doc/287290>.

@article{Porco1989,
abstract = {A shear deformation theory is developed to analyse the geometrically nonlinear behaviour of layered composite plates under transverse loads. The theory accounts for the transverse shear (as in the Reissner Mindlin plate theory) and large rotations (in the sense of the von Karman theory) suitable for simulating the behaviour of moderately thick plates. Square and rectangular plates are considered: the numerical results are obtained by a finite element computational procedure and are given for various boundary and loading conditions, a/b ratios, stacking and orientation of layers and material properties ($E_\{1\}/E_\{2\}$ ratio, $E_\{1\}/G$ ratio, etc.).},
author = {Porco, Giacinto, Spadea, Giuseppe, Zinno, Raffaele},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Plates; Composite; Laminated; transverse loads; transverse shear; Reissner-Mindlin plate theory; large rotations; von Kármán theory; moderately thick plates; Square and rectangular plates},
language = {eng},
month = {12},
number = {1},
pages = {159-176},
publisher = {Accademia Nazionale dei Lincei},
title = {A geometrically nonlinear analysis of laminated composite plates using a shear deformation theory},
url = {http://eudml.org/doc/287290},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Porco, Giacinto
AU - Spadea, Giuseppe
AU - Zinno, Raffaele
TI - A geometrically nonlinear analysis of laminated composite plates using a shear deformation theory
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 159
EP - 176
AB - A shear deformation theory is developed to analyse the geometrically nonlinear behaviour of layered composite plates under transverse loads. The theory accounts for the transverse shear (as in the Reissner Mindlin plate theory) and large rotations (in the sense of the von Karman theory) suitable for simulating the behaviour of moderately thick plates. Square and rectangular plates are considered: the numerical results are obtained by a finite element computational procedure and are given for various boundary and loading conditions, a/b ratios, stacking and orientation of layers and material properties ($E_{1}/E_{2}$ ratio, $E_{1}/G$ ratio, etc.).
LA - eng
KW - Plates; Composite; Laminated; transverse loads; transverse shear; Reissner-Mindlin plate theory; large rotations; von Kármán theory; moderately thick plates; Square and rectangular plates
UR - http://eudml.org/doc/287290
ER -

References

top
  1. ASHTON, J.E. and WHITNEY, J.M., 1970. Theory of laminated plates. Technomic Publishing Co. Inc. 
  2. BRUNO, D., LEONARDI, A. and PORCO, G.Nonlinear analysis of thick sandwich plates. In «The Second East Asia-Pacific Conference on Structural Engng. and Constr., Chiang Mai, Thailand, 11-13 Jan. 1989». 
  3. CALCOTE LEE, R., 1969. The analysis of laminated composite structures. Van Nostrand Reinhold Company. 
  4. CHIA, C.Y., 1980. Non linear analysis of plates. McGraw Hill Inc. 
  5. MINDLIN, R.D., 1951. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Appl. Mech.: 31-38. Zbl0044.40101
  6. PAGANO, N.J., 1967. Analysis of the flexure test of bidirectional composites. J. Comp. Mater., 1, n. 4: 336-343. 
  7. PAGANO, N.J., 1969. Exact solution for composite laminates in cylindrical bending. J. Comp. Mater., 3: 398-411. 
  8. PAGANO, N.J., 1970. Exact solutions for rectangular bi-directional composites and sandwich plates. J. Comp. Mater., 4: 20. 
  9. PAGANO, N.J., 1970. Influence of shear coupling in cylindrical bending of anisotropic laminates. J. Comp. Mater., 4: 330-343 
  10. PANDA, S.C. and NATARAYAN, R., 1979. Finite element analysis of laminated composite plates. Int. J. for Num. Meth. in Engng., 14: 69-79. Zbl0394.73073
  11. REDDY, J.N., 1984. An introduction to the finite element method. McGraw Hill Inc. Zbl0561.65079
  12. REDDY, J.N., 1984. Energy and variational methods in applied mechanics. John Wiley & Sons Inc. Zbl0635.73017
  13. REDDY, J.N. and CHAO, W.C., 1981. Non linear bending of thick rectangular, laminated composite plates. Int. J. Non Linear Mech., 16, n. 3/4: 291-301. Zbl0475.73014
  14. REISSNER, E. and STAVSKY, Y., 1961. Bending and stretching of certain types of heterogeneous aelotropic elastic plates. Journal of Appl. Mech., 28: 402-408. Zbl0100.20904MR138248
  15. RENNKAN, Y. and MARVIN ITO, Y., 1972. Analysis of unbalanced angle-ply rectangular plates. Int. J. Solids Structures, 8: 1283-1297. Zbl0245.73047
  16. VINSON, J.R. and CHOU, T.W., 1975. Composite materials and their use in structures. Applied Science Publishers LTD, London. 
  17. WHITNEY, J.M. and LEISSA, A.W., 1969. Analysis of heterogeneous anisotropic plates. Journal of Appl. Mech.: 261-301. Zbl0181.52603
  18. WHITNEY, J.M. and PAGANO, N.J., 1970. Shear deformation in heterogeneous anisotropic plates. Journal of Appl. Mech.: 1031-1036. Zbl0218.73078

NotesEmbed ?

top

You must be logged in to post comments.