Lie group structures and reproducing kernels on the unit ball of n

Umberto Sampieri

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1984)

  • Volume: 76, Issue: 4, page 247-252
  • ISSN: 1120-6330

How to cite

top

Sampieri, Umberto. "Lie group structures and reproducing kernels on the unit ball of $\mathbb{C}^{n}$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 76.4 (1984): 247-252. <http://eudml.org/doc/287517>.

@article{Sampieri1984,
author = {Sampieri, Umberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Lie group; homogeneous Siegel domains; reproducing kernel; Bergman kernel; Szegö kernel},
language = {eng},
month = {4},
number = {4},
pages = {247-252},
publisher = {Accademia Nazionale dei Lincei},
title = {Lie group structures and reproducing kernels on the unit ball of $\mathbb\{C\}^\{n\}$},
url = {http://eudml.org/doc/287517},
volume = {76},
year = {1984},
}

TY - JOUR
AU - Sampieri, Umberto
TI - Lie group structures and reproducing kernels on the unit ball of $\mathbb{C}^{n}$
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1984/4//
PB - Accademia Nazionale dei Lincei
VL - 76
IS - 4
SP - 247
EP - 252
LA - eng
KW - Lie group; homogeneous Siegel domains; reproducing kernel; Bergman kernel; Szegö kernel
UR - http://eudml.org/doc/287517
ER -

References

top
  1. GINDIKIN, , PJATESKII-SAPIRO, , VINBERG, (1963) - Classification and canonical realization of complex bounded homogeneous domains, «Trudy Moskow Math. Obsch.», 12, 359-388, «Trans, of the Moskow Math. Soc.», 12, 404-437. 
  2. KANEYUKI, (1972) - Homogeneous bounded domains and Siegel domains, «Lecture notes in Mathematics», 241, Springer. 
  3. VERGNE, , ROSSI, (1976) - Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, «Acta Math.», 136, 1-59. Zbl0356.32020
  4. VINBERG, (1963) - Theory of convex homogeneous cones, «Trudy Moskow Math. Obsch.», 12, «American Math. Soc. Trans.», 341-403. 
  5. SAMPIERI, - Lie groups structures and reproducing kernels on homogeneous Siegel domains, to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.