Traces and fine properties of a B D class of vector fields and applications

Luigi Ambrosio; Gianluca Crippa; Stefania Maniglia

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 4, page 527-561
  • ISSN: 0240-2963

How to cite

top

Ambrosio, Luigi, Crippa, Gianluca, and Maniglia, Stefania. "Traces and fine properties of a $BD$ class of vector fields and applications." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.4 (2005): 527-561. <http://eudml.org/doc/73657>.

@article{Ambrosio2005,
author = {Ambrosio, Luigi, Crippa, Gianluca, Maniglia, Stefania},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {finite deformation; DiPerna-Lions theory; bounded deformation},
language = {eng},
number = {4},
pages = {527-561},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Traces and fine properties of a $BD$ class of vector fields and applications},
url = {http://eudml.org/doc/73657},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Ambrosio, Luigi
AU - Crippa, Gianluca
AU - Maniglia, Stefania
TI - Traces and fine properties of a $BD$ class of vector fields and applications
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 4
SP - 527
EP - 561
LA - eng
KW - finite deformation; DiPerna-Lions theory; bounded deformation
UR - http://eudml.org/doc/73657
ER -

References

top
  1. [1] Alberti ( G. ). — Rank-one properties for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A, 123, p. 239-274 (1993). Zbl0791.26008MR1215412
  2. [2] Alberti ( G. ), Ambrosio ( L.). — A geometrical approach to monotone functions in Rn. Math. Z., 230, p. 259-316 (1999). Zbl0934.49025MR1676726
  3. [3] Ambrosio ( L.). — Transport equation and Cauchy problem for BV vector fields. Invent. Math., 158, p. 227-260 (2004). Zbl1075.35087MR2096794
  4. [4] Ambrosio ( L.), Bouchut ( F.), De Lellis ( C.). - Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions . Comm. Partial Diff. Eq., 29, p. 1635-1651 (2004). Zbl1072.35116MR2103848
  5. [5] Ambrosio ( L.), Coscia ( A.), Dal Maso ( G.). — Fine properties of functions in BD. Arch. Rat. Mech. Anal., 139, p. 201-238 (1997). Zbl0890.49019MR1480240
  6. [6] Ambrosio ( L.), De Lellis ( C.). — Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions . IMRN, 41, p. 2205-2220 (2003 ). Zbl1061.35048MR2000967
  7. [7] Ambrosio ( L. ) , De Lellis ( C.), Maly ( J.). — On the chain rule for the divergence of BV like vector fields: applications, partial results, open problems. Preprint (2005). 
  8. [8] Ambrosio ( L.), Fusco ( N.), Pallara ( D.). — Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs (2000). Zbl0957.49001MR1857292
  9. [9] Anzellotti ( G.). — Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura App. , 135, p. 293-318 (1983). Zbl0572.46023MR750538
  10. [10] Anzellotti ( G.). — The Euler equation for functionals with linear growth. Trans. Amer. Mat. Soc., 290, p. 483-501 (1985). Zbl0611.49018MR792808
  11. [11] Anzellotti ( G. ). — Traces of bounded vectorfields and the divergence theorem. Unpublished preprint (1983). 
  12. [12] Bouchut ( F.). — Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Rational Mech. Anal., 157, p. 75-90 (2001). Zbl0979.35032MR1822415
  13. [13] Bouchut ( F. ) , James ( F.). — One dimensional transport equation with discontinuous coefficients. Nonlinear Analysis , 32, p. 891-933 (1998). Zbl0989.35130MR1618393
  14. [14] Bouchut ( F. ) , James ( F.), Mancini ( S.). — Uniqueness and weak stablity for multi-dimensional transport equations with one-sided Lipschitz coefficients . Ann. Scuola Normale Superiore di Pisa, Classe di Scienze , (5) 4, p. 1-25 (2005). Zbl1170.35363MR2165401
  15. [15] Bressan ( A.). — An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova, 110, p. 103-117 (2003). Zbl1114.35123MR2033003
  16. [16] Capuzzo Dolcetta ( I.), Perthame ( B.). - On some analogy between different approaches to first order PDE's with nonsmooth coefficients. Adv. Math. Sci Appl., 6, p. 689-703 (1996). Zbl0865.35032MR1411988
  17. [17] Chen ( G.-Q. ), Frid ( H.). — Divergence-measure fields and conservation laws. Arch. Rational Mech. Anal., 147, p. 89-118 (1999). Zbl0942.35111MR1702637
  18. [18] Chen ( G.-Q. ), Frid ( H.).— Extended divergence-measure fields and the Euler equation of gas dynamics. Comm. Math. Phys. , 236, p. 251-280 (2003). Zbl1036.35125MR1981992
  19. [19] Colombini ( F.), Lerner ( N.). — Uniqueness of continuous solutions for BV vector fields. Duke Math. J., 111, p. 357-384 (2002). Zbl1017.35029MR1882138
  20. [20] Colombini ( F.), Lerner ( N.). — Uniqueness of L°° solutions for a class of conormal BV vector fields. Geometric Analysis of PDE and Several Complex Variables, Contemp. Math., 368, p. 133-156 (2005). Zbl1064.35033
  21. [21] Di Perna ( R.J.), Lions ( P.L.). — Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. , 98, p. 511-547 (1989). Zbl0696.34049
  22. [22] Evans ( L.C. ) , Gariepy ( R.F.). — Lecture notes on measure theory and fine properties of functions, CRC Press (1992). 
  23. [23] Federer ( H. ). — Geometric measure theory, Springer (1969). Zbl0176.00801MR257325
  24. [24] Keyfitz ( B.L.), Kranzer ( H.C.). — A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch. Rational Mech. Anal., 72, p. 219-241 (1980). Zbl0434.73019MR549642
  25. [25] Lions ( P.L. ). - Sur les équations différentielles ordinaires et les équations de transport. C. R. Acad. Sci. Paris Sér. I, 326, p. 833-838 (1998). Zbl0919.34028
  26. [26] Petrova ( G.), Popov ( B.). — Linear transport equation with discontinuous coefficients. Comm. PDE, 24, p. 1849-1873 (1999). Zbl0992.35104MR1708110
  27. [27] Popaud ( F. ), Rascle ( M.). - Measure solutions to the liner multidimensional transport equation with non-smooth coefficients. Comm. PDE, 22, p. 337-358 (1997). Zbl0882.35026MR1434148
  28. [28] Temam ( R.). — Problèmes mathématiques en plasticité. Gauthier-Villars, Paris ( 1983). Zbl0547.73026
  29. [29] Vasseur ( A.). — Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal., 160, p. 181-193 (2001). Zbl0999.35018MR1869441

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.