Displaying similar documents to “Synchronization of fractional chaotic complex networks with delays”

Existence results for systems of conformable fractional differential equations

Bouharket Bendouma, Alberto Cabada, Ahmed Hammoudi (2019)

Archivum Mathematicum

Similarity:

In this article, we study the existence of solutions to systems of conformable fractional differential equations with periodic boundary value or initial value conditions. where the right member of the system is L α 1 -carathéodory function. We employ the method of solution-tube and Schauder’s fixed-point theorem.

Synchronization of fractional-order chaotic systems with multiple delays by a new approach

Jianbing Hu, Hua Wei, Lingdong Zhao (2015)

Kybernetika

Similarity:

In this paper, we propose a new approach of designing a controller and an update rule of unknown parameters for synchronizing fractional-order system with multiple delays and prove the correctness of the approach according to the fractional Lyapunov stable theorem. Based on the proposed approach, synchronizing fractional delayed chaotic system with and without unknown parameters is realized. Numerical simulations are carried out to confirm the effectiveness of the approach.

Functions of finite fractional variation and their applications to fractional impulsive equations

Dariusz Idczak (2017)

Czechoslovak Mathematical Journal

Similarity:

We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak σ -additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a σ -additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.

Left general fractional monotone approximation theory

George A. Anastassiou (2016)

Applicationes Mathematicae

Similarity:

We introduce left general fractional Caputo style derivatives with respect to an absolutely continuous strictly increasing function g. We give various examples of such fractional derivatives for different g. Let f be a p-times continuously differentiable function on [a,b], and let L be a linear left general fractional differential operator such that L(f) is non-negative over a closed subinterval I of [a,b]. We find a sequence of polynomials Qₙ of degree ≤n such that L(Qₙ) is non-negative...

Fractional Langevin equation with α-stable noise. A link to fractional ARIMA time series

M. Magdziarz, A. Weron (2007)

Studia Mathematica

Similarity:

We introduce a fractional Langevin equation with α-stable noise and show that its solution Y κ ( t ) , t 0 is the stationary α-stable Ornstein-Uhlenbeck-type process recently studied by Taqqu and Wolpert. We examine the asymptotic dependence structure of Y κ ( t ) via the measure of its codependence r(θ₁,θ₂,t). We prove that Y κ ( t ) is not a long-memory process in the sense of r(θ₁,θ₂,t). However, we find two natural continuous-time analogues of fractional ARIMA time series with long memory in the framework of...

Chaos synchronization of a fractional nonautonomous system

Zakia Hammouch, Toufik Mekkaoui (2014)

Nonautonomous Dynamical Systems

Similarity:

In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the effectiveness of the proposed methods.

Suitable domains to define fractional integrals of Weyl via fractional powers of operators

Celso Martínez, Antonia Redondo, Miguel Sanz (2011)

Studia Mathematica

Similarity:

We present a new method to study the classical fractional integrals of Weyl. This new approach basically consists in considering these operators in the largest space where they make sense. In particular, we construct a theory of fractional integrals of Weyl by studying these operators in an appropriate Fréchet space. This is a function space which contains the L p ( ) -spaces, and it appears in a natural way if we wish to identify these fractional operators with fractional powers of a suitable...

Multiplicity results for a class of fractional boundary value problems

Nemat Nyamoradi (2013)

Annales Polonici Mathematici

Similarity:

We prove the existence of at least three solutions to the following fractional boundary value problem: ⎧ - d / d t ( 1 / 2 0 D t - σ ( u ' ( t ) ) + 1 / 2 t D T - σ ( u ' ( t ) ) ) - λ β ( t ) f ( u ( t ) ) - μ γ ( t ) g ( u ( t ) ) = 0 , a.e. t ∈ [0, T], ⎨ ⎩ u (0) = u (T) = 0, where 0 D t - σ and t D T - σ are the left and right Riemann-Liouville fractional integrals of order 0 ≤ σ < 1 respectively. The approach is based on a recent three critical points theorem of Ricceri [B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), 7446-7454].

Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces

Zhinan Xia (2017)

Czechoslovak Mathematical Journal

Similarity:

In this paper, for the impulsive fractional integro-differential equations involving Caputo fractional derivative in Banach space, we investigate the existence and uniqueness of a pseudo almost periodic P C -mild solution. The working tools are based on the fixed point theorems, the fractional powers of operators and fractional calculus. Some known results are improved and generalized. Finally, existence and uniqueness of a pseudo almost periodic P C -mild solution of a two-dimensional impulsive...

Cauchy problem with Denjoy-Stieltjes integral

María Guadalupe Morales Macías (2024)

Mathematica Bohemica

Similarity:

This work is devoted to analyzing the existence of the Cauchy fractional-type problems considering the Riemann-Liouville derivative (in the distributional Denjoy integral sense) of real order n 1 . These kinds of equations are a generalization of the measure differential equations. Our results extend A. A. Kilbas, H. M. Srivastava, J. J. Trujillo (2006) and H. Zhou, G. Ye, W. Liu, O. Wang (2015).

Fractional virus epidemic model on financial networks

Mehmet Ali Balci (2016)

Open Mathematics

Similarity:

In this study, we present an epidemic model that characterizes the behavior of a financial network of globally operating stock markets. Since the long time series have a global memory effect, we represent our model by using the fractional calculus. This model operates on a network, where vertices are the stock markets and edges are constructed by the correlation distances. Thereafter, we find an analytical solution to commensurate system and use the well-known differential transform...