On the geometrical properties of Heisenberg groups
Archivum Mathematicum (2020)
- Volume: 056, Issue: 1, page 11-19
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topReferences
top- Batat, W., Onda, K., 10.1016/j.geomphys.2016.11.018, J. Geom. Phys. 114 (2017), 138–152. (2017) MR3610038DOI10.1016/j.geomphys.2016.11.018
- Batat, W., Rahmani, S., Homogeneous Lorentzian structures on the generalized Heisenberg group, Differ. Geom. Dyn. Syst. 12 (2010), 12–17. (2010) MR2606543
- Brozos-Vazquez, M., Calvaruso, G., Garcia-Rio, E., Gavino-Fernandez, S., 10.1007/s11856-011-0124-3, Israel J. Math. 188 (2012), 385–403. (2012) MR2897737DOI10.1007/s11856-011-0124-3
- Calvaruso, G., 10.1007/s10711-007-9163-7, Geom. Dedicata 127 (2007), 99–119. (2007) MR2338519DOI10.1007/s10711-007-9163-7
- Calvaruso, G., 10.1016/j.geomphys.2010.11.001, J. Geom. Phys. 61 (2011), 498–515. (2011) MR2746133DOI10.1016/j.geomphys.2010.11.001
- Calvaruso, G., 10.2478/s11533-011-0109-9, Cent. Eur. J. Math. 10 (2) (2012), 411–425. (2012) MR2886549DOI10.2478/s11533-011-0109-9
- Calvaruso, G., 10.1007/s00009-017-1019-2, Mediterr. J. Math. 14 (2017), 1–21. (2017) MR3707300DOI10.1007/s00009-017-1019-2
- Calvaruso, G., Zaeim, A., 10.1016/j.geomphys.2014.02.007, J. Geom. Phys. 80 (2014), 15–25. (2014) MR3188790DOI10.1016/j.geomphys.2014.02.007
- Fastenakels, J., Munteanu, M.I., Van Der Veken, J., Constant angle surfaces in the Heisenberg group, J. Acta Math. 27 (4) (2011), 747–756. (2011) MR2776411
- Gadea, P.M., Oubina, J.A., 10.1007/BF01320735, Monatsh. Math. 124 (1997), 17–34. (1997) MR1457209DOI10.1007/BF01320735
- Gadea, P.M., Oubina, J.A., 10.1007/s000130050403, Arch. Math. (Basel) 73 (1999), 311–320. (1999) MR1710084DOI10.1007/s000130050403
- Gil-Medrano, O., Hurtado, A., 10.1016/j.geomphys.2003.09.008, J. Geom. Phys. 51 (2004), 82–100. (2004) MR2078686DOI10.1016/j.geomphys.2003.09.008
- Gray, A., 10.1007/BF00151525, Geom. Dedicata 7 (1978), 259–280. (1978) Zbl0378.53018MR0505561DOI10.1007/BF00151525
- Nasehi, M., Aghasi, M., On the geometrical properties of hypercomplex four-dimensional Lorentzian Lie groups, to appear in Georgian Math. J. MR4069964
- Nasehi, M., Aghasi, M., 10.1016/j.geomphys.2018.06.008, J. Geom. Phys. 132 (2018), 230–238. (2018) MR3836779DOI10.1016/j.geomphys.2018.06.008
- Nasehi, M., Aghasi, M., 10.21136/CMJ.2018.0635-16, Czechoslovak Math. J. 68 (3) (2018), 723–740. (2018) MR3851887DOI10.21136/CMJ.2018.0635-16
- Nurowski, P., Randall, M., 10.1007/s12220-015-9592-8, J. Geom. Anal. 26 (2) (2016), 1280–1345. (2016) MR3472837DOI10.1007/s12220-015-9592-8
- Rahmani, N., Rahmani, S., 10.1016/0393-0440(94)90033-7, J. Geom. Phys. 13 (1994), 254–258. (1994) MR1269242DOI10.1016/0393-0440(94)90033-7
- Rahmani, N., Rahmani, S., 10.1007/s10711-005-9030-3, Geom. Dedicata 118 (2006), 133–140. (2006) MR2239452DOI10.1007/s10711-005-9030-3
- Rahmani, S., 10.1016/0393-0440(92)90033-W, J. Geom. Phys. 9 (3) (1992), 295–302, (French). (1992) MR1171140DOI10.1016/0393-0440(92)90033-W
- Tricerri, F., Vanhecke, L., Homogeneous structures on Riemannian manifolds, Cambridge University Press, 1983. (1983) MR0712664