On the integral representation of finely superharmonic functions
Abderrahim Aslimani; Imad El Ghazi; Mohamed El Kadiri
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 3, page 323-350
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAslimani, Abderrahim, El Ghazi, Imad, and El Kadiri, Mohamed. "On the integral representation of finely superharmonic functions." Commentationes Mathematicae Universitatis Carolinae 60.3 (2019): 323-350. <http://eudml.org/doc/294537>.
@article{Aslimani2019,
abstract = {In the present paper we study the integral representation of nonnegative finely superharmonic functions in a fine domain subset $U$ of a Brelot $\mathcal \{P\}$-harmonic space $\Omega $ with countable base of open subsets and satisfying the axiom $D$. When $\Omega $ satisfies the hypothesis of uniqueness, we define the Martin boundary of $U$ and the Martin kernel $K$ and we obtain the integral representation of invariant functions by using the kernel $K$. As an application of the integral representation we extend to the cone $\mathcal \{S(U)\}$ of nonnegative finely superharmonic functions in $U$ a partition theorem of Brelot. We also establish an approximation result of invariant functions by finely harmonic functions in the case where the minimal invariant functions are finely harmonic.},
author = {Aslimani, Abderrahim, El Ghazi, Imad, El Kadiri, Mohamed},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {finely harmonic function; finely superharmonic function; fine potential; fine Green kernel; integral representation; Martin boundary; fine Riesz-Martin kernel},
language = {eng},
number = {3},
pages = {323-350},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the integral representation of finely superharmonic functions},
url = {http://eudml.org/doc/294537},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Aslimani, Abderrahim
AU - El Ghazi, Imad
AU - El Kadiri, Mohamed
TI - On the integral representation of finely superharmonic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 3
SP - 323
EP - 350
AB - In the present paper we study the integral representation of nonnegative finely superharmonic functions in a fine domain subset $U$ of a Brelot $\mathcal {P}$-harmonic space $\Omega $ with countable base of open subsets and satisfying the axiom $D$. When $\Omega $ satisfies the hypothesis of uniqueness, we define the Martin boundary of $U$ and the Martin kernel $K$ and we obtain the integral representation of invariant functions by using the kernel $K$. As an application of the integral representation we extend to the cone $\mathcal {S(U)}$ of nonnegative finely superharmonic functions in $U$ a partition theorem of Brelot. We also establish an approximation result of invariant functions by finely harmonic functions in the case where the minimal invariant functions are finely harmonic.
LA - eng
KW - finely harmonic function; finely superharmonic function; fine potential; fine Green kernel; integral representation; Martin boundary; fine Riesz-Martin kernel
UR - http://eudml.org/doc/294537
ER -
References
top- Alfsen E. M., Compact Convex Sets and Boundary Integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, 57, Springer, New York, 1971. Zbl0209.42601MR0445271
- Armitage D. H., Gardiner S. J., Classical Potential Theory, Springer Monographs in Mathematics, Springer, London, 2001. Zbl0972.31001MR1801253
- Beznea L., Boboc N., 10.1112/S0024609305004856, Bull. London Math. Soc. 37 (2005), no. 6, 899–907. MR2186723DOI10.1112/S0024609305004856
- Boboc N., Bucur Gh., Natural localization and natural sheaf property in standard H-cones of functions. I, Rev. Roumaine Math. Pures Appl. 30 (1985), no. 1, 1–21. MR0789583
- Boboc N., Bucur G., Cornea A., 10.1007/BFb0090454, Lecture Notes in Mathematics, 853, Springer, Berlin, 1981. MR0613980DOI10.1007/BFb0090454
- Brelot M., Sur le principe des singularités positives et la topologie de R. S. Martin., Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N. S.) 23 (1948), 113–138 (French). MR0026724
- Brelot M., Sur le théorème de partition de Mme R. M. Hervé, Rocky Mountain J. Math. 10 (1980), no. 1, 293–302 (French). MR0573877
- Choquet G., Lectures on Analysis, Vol. II: Representation Theory, W. A. Benjamin, New York, 1969. MR0250012
- Constantinescu C., Cornea A., Potential Theory on Harmonic spaces, Die Grundlehren der mathematischen Wissenschaften, 158, Springer, Heidelberg, 1972. MR0419799
- Dellacherie C., Meyer P.-A., Probabilités et potentiel, Chapitres XII–XVI, Publications de l'Institut de Mathématiques de l'Université de Strasbourg, Actualités Scientifiques et Industrielles, 1417, Hermann, Paris, 1987 (French). Zbl0624.60084MR0488194
- Doob J. L., Classical Potential Theory and Its Probabilistic Counterparts, Grundlehren der Mathematischen Wissenschaften, 262, Springer, New Yourk, 1984. MR0731258
- El Kadiri M., 10.1023/A:1009869923566, Positivity 4 (2000), no. 2, 105–114 (French. English summary). MR1755674DOI10.1023/A:1009869923566
- El Kadiri M., Fonctions séparément finement surharmoniques, Positivity 7 (2003), no. 3, 245–256 (French. English, French summary). MR2018599
- El Kadiri M., Fuglede B., 10.1007/s11118-015-9495-0, Potential Anal. 44 (2016), no. 1, 1–25. MR3455206DOI10.1007/s11118-015-9495-0
- El Kadiri M., Fuglede B., 10.1007/s11118-015-9518-x, Potential Anal. 44 (2016), no. 2, 401–422. MR3460031DOI10.1007/s11118-015-9518-x
- El Kadiri M., Fuglede B., 10.1016/j.jmaa.2017.07.066, J. Math. Anal. Appl. 457 (2018), no. 1, 179–199. MR3702701DOI10.1016/j.jmaa.2017.07.066
- Fuglede B., 10.1007/BFb0068451, Lecture Notes in Mathematics, 289, Springer, Berlin, 1972. MR0450590DOI10.1007/BFb0068451
- Fuglede B., 10.5802/aif.579, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 3–4, 201–206 (French. English summary). MR0430284DOI10.5802/aif.579
- Fuglede B., 10.5186/aasfm.1976.0210, Ann. Acad. Sci. Fenn. Serie A I Math. 2 (1976), 113–127. MR0470240DOI10.5186/aasfm.1976.0210
- Fuglede B., 10.1016/0022-1236(82)90085-4, J. Functional Analysis 49 (1982), no. 1, 52–72. MR0680856DOI10.1016/0022-1236(82)90085-4
- Fuglede B., 10.1007/BF01455311, Math. Ann. 262 (1983), no. 2, 191–214. MR0690195DOI10.1007/BF01455311
- Fuglede B., Représentation intégrale des potentiels fins, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 5, 129–132 (French. English summary). MR0779693
- Fuglede B., 10.1007/BFb0103345, Potential theory—surveys and problems, Prague, 1987, Lecture Notes in Math., 1344, Springer, Berlin, 1988, pages 81–97. MR0973882DOI10.1007/BFb0103345
- Gardiner S. J., Hansen W., 10.1016/j.aim.2007.02.012, Adv. Math. 214 (2007), no. 1, 417–436. MR2348037DOI10.1016/j.aim.2007.02.012
- Hervé R.-M., 10.5802/aif.125, Ann. Inst. Fourier (Grenoble) 12 (1962), 415–517 (French). Zbl0101.08103MR0139756DOI10.5802/aif.125
- Le Jan Y., Quasi-continuous functions associated with Hunt processes, Proc. Amer. Math. Soc. 86 (1982), no. 1, 133–138. MR0663882
- Le Jan Y., 10.2969/jmsj/03510037, J. Math. Soc. Japan 35 (1983), no. 1, 37–42. MR0679072DOI10.2969/jmsj/03510037
- Le Jan Y., 10.1007/BFb0100122, Théorie du Potentiel, Orsay, 1983, Lecture Notes in Math., 1096, Springer, Berlin, 1984, pages 412–418 (French). MR0890369DOI10.1007/BFb0100122
- Meyer P. A., 10.5802/aif.149, Ann. Inst. Fourier (Grenoble) 13 (1963), fasc. 2, 357–372. MR0162956DOI10.5802/aif.149
- Mokobodzki G., 10.5802/aif.199, Ann. Inst. Fourier (Grenoble) 15 (1965), fasc. 1, 103–112 (French). Zbl0134.09502MR0196110DOI10.5802/aif.199
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.