On the integral representation of finely superharmonic functions

Abderrahim Aslimani; Imad El Ghazi; Mohamed El Kadiri

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 3, page 323-350
  • ISSN: 0010-2628

Abstract

top
In the present paper we study the integral representation of nonnegative finely superharmonic functions in a fine domain subset U of a Brelot 𝒫 -harmonic space Ω with countable base of open subsets and satisfying the axiom D . When Ω satisfies the hypothesis of uniqueness, we define the Martin boundary of U and the Martin kernel K and we obtain the integral representation of invariant functions by using the kernel K . As an application of the integral representation we extend to the cone 𝒮 ( 𝒰 ) of nonnegative finely superharmonic functions in U a partition theorem of Brelot. We also establish an approximation result of invariant functions by finely harmonic functions in the case where the minimal invariant functions are finely harmonic.

How to cite

top

Aslimani, Abderrahim, El Ghazi, Imad, and El Kadiri, Mohamed. "On the integral representation of finely superharmonic functions." Commentationes Mathematicae Universitatis Carolinae 60.3 (2019): 323-350. <http://eudml.org/doc/294537>.

@article{Aslimani2019,
abstract = {In the present paper we study the integral representation of nonnegative finely superharmonic functions in a fine domain subset $U$ of a Brelot $\mathcal \{P\}$-harmonic space $\Omega $ with countable base of open subsets and satisfying the axiom $D$. When $\Omega $ satisfies the hypothesis of uniqueness, we define the Martin boundary of $U$ and the Martin kernel $K$ and we obtain the integral representation of invariant functions by using the kernel $K$. As an application of the integral representation we extend to the cone $\mathcal \{S(U)\}$ of nonnegative finely superharmonic functions in $U$ a partition theorem of Brelot. We also establish an approximation result of invariant functions by finely harmonic functions in the case where the minimal invariant functions are finely harmonic.},
author = {Aslimani, Abderrahim, El Ghazi, Imad, El Kadiri, Mohamed},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {finely harmonic function; finely superharmonic function; fine potential; fine Green kernel; integral representation; Martin boundary; fine Riesz-Martin kernel},
language = {eng},
number = {3},
pages = {323-350},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the integral representation of finely superharmonic functions},
url = {http://eudml.org/doc/294537},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Aslimani, Abderrahim
AU - El Ghazi, Imad
AU - El Kadiri, Mohamed
TI - On the integral representation of finely superharmonic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 3
SP - 323
EP - 350
AB - In the present paper we study the integral representation of nonnegative finely superharmonic functions in a fine domain subset $U$ of a Brelot $\mathcal {P}$-harmonic space $\Omega $ with countable base of open subsets and satisfying the axiom $D$. When $\Omega $ satisfies the hypothesis of uniqueness, we define the Martin boundary of $U$ and the Martin kernel $K$ and we obtain the integral representation of invariant functions by using the kernel $K$. As an application of the integral representation we extend to the cone $\mathcal {S(U)}$ of nonnegative finely superharmonic functions in $U$ a partition theorem of Brelot. We also establish an approximation result of invariant functions by finely harmonic functions in the case where the minimal invariant functions are finely harmonic.
LA - eng
KW - finely harmonic function; finely superharmonic function; fine potential; fine Green kernel; integral representation; Martin boundary; fine Riesz-Martin kernel
UR - http://eudml.org/doc/294537
ER -

References

top
  1. Alfsen E. M., Compact Convex Sets and Boundary Integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, 57, Springer, New York, 1971. Zbl0209.42601MR0445271
  2. Armitage D. H., Gardiner S. J., Classical Potential Theory, Springer Monographs in Mathematics, Springer, London, 2001. Zbl0972.31001MR1801253
  3. Beznea L., Boboc N., 10.1112/S0024609305004856, Bull. London Math. Soc. 37 (2005), no. 6, 899–907. MR2186723DOI10.1112/S0024609305004856
  4. Boboc N., Bucur Gh., Natural localization and natural sheaf property in standard H-cones of functions. I, Rev. Roumaine Math. Pures Appl. 30 (1985), no. 1, 1–21. MR0789583
  5. Boboc N., Bucur G., Cornea A., 10.1007/BFb0090454, Lecture Notes in Mathematics, 853, Springer, Berlin, 1981. MR0613980DOI10.1007/BFb0090454
  6. Brelot M., Sur le principe des singularités positives et la topologie de R. S. Martin., Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N. S.) 23 (1948), 113–138 (French). MR0026724
  7. Brelot M., Sur le théorème de partition de Mme R. M. Hervé, Rocky Mountain J. Math. 10 (1980), no. 1, 293–302 (French). MR0573877
  8. Choquet G., Lectures on Analysis, Vol. II: Representation Theory, W. A. Benjamin, New York, 1969. MR0250012
  9. Constantinescu C., Cornea A., Potential Theory on Harmonic spaces, Die Grundlehren der mathematischen Wissenschaften, 158, Springer, Heidelberg, 1972. MR0419799
  10. Dellacherie C., Meyer P.-A., Probabilités et potentiel, Chapitres XII–XVI, Publications de l'Institut de Mathématiques de l'Université de Strasbourg, Actualités Scientifiques et Industrielles, 1417, Hermann, Paris, 1987 (French). Zbl0624.60084MR0488194
  11. Doob J. L., Classical Potential Theory and Its Probabilistic Counterparts, Grundlehren der Mathematischen Wissenschaften, 262, Springer, New Yourk, 1984. MR0731258
  12. El Kadiri M., 10.1023/A:1009869923566, Positivity 4 (2000), no. 2, 105–114 (French. English summary). MR1755674DOI10.1023/A:1009869923566
  13. El Kadiri M., Fonctions séparément finement surharmoniques, Positivity 7 (2003), no. 3, 245–256 (French. English, French summary). MR2018599
  14. El Kadiri M., Fuglede B., 10.1007/s11118-015-9495-0, Potential Anal. 44 (2016), no. 1, 1–25. MR3455206DOI10.1007/s11118-015-9495-0
  15. El Kadiri M., Fuglede B., 10.1007/s11118-015-9518-x, Potential Anal. 44 (2016), no. 2, 401–422. MR3460031DOI10.1007/s11118-015-9518-x
  16. El Kadiri M., Fuglede B., 10.1016/j.jmaa.2017.07.066, J. Math. Anal. Appl. 457 (2018), no. 1, 179–199. MR3702701DOI10.1016/j.jmaa.2017.07.066
  17. Fuglede B., 10.1007/BFb0068451, Lecture Notes in Mathematics, 289, Springer, Berlin, 1972. MR0450590DOI10.1007/BFb0068451
  18. Fuglede B., 10.5802/aif.579, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 3–4, 201–206 (French. English summary). MR0430284DOI10.5802/aif.579
  19. Fuglede B., 10.5186/aasfm.1976.0210, Ann. Acad. Sci. Fenn. Serie A I Math. 2 (1976), 113–127. MR0470240DOI10.5186/aasfm.1976.0210
  20. Fuglede B., 10.1016/0022-1236(82)90085-4, J. Functional Analysis 49 (1982), no. 1, 52–72. MR0680856DOI10.1016/0022-1236(82)90085-4
  21. Fuglede B., 10.1007/BF01455311, Math. Ann. 262 (1983), no. 2, 191–214. MR0690195DOI10.1007/BF01455311
  22. Fuglede B., Représentation intégrale des potentiels fins, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 5, 129–132 (French. English summary). MR0779693
  23. Fuglede B., 10.1007/BFb0103345, Potential theory—surveys and problems, Prague, 1987, Lecture Notes in Math., 1344, Springer, Berlin, 1988, pages 81–97. MR0973882DOI10.1007/BFb0103345
  24. Gardiner S. J., Hansen W., 10.1016/j.aim.2007.02.012, Adv. Math. 214 (2007), no. 1, 417–436. MR2348037DOI10.1016/j.aim.2007.02.012
  25. Hervé R.-M., 10.5802/aif.125, Ann. Inst. Fourier (Grenoble) 12 (1962), 415–517 (French). Zbl0101.08103MR0139756DOI10.5802/aif.125
  26. Le Jan Y., Quasi-continuous functions associated with Hunt processes, Proc. Amer. Math. Soc. 86 (1982), no. 1, 133–138. MR0663882
  27. Le Jan Y., 10.2969/jmsj/03510037, J. Math. Soc. Japan 35 (1983), no. 1, 37–42. MR0679072DOI10.2969/jmsj/03510037
  28. Le Jan Y., 10.1007/BFb0100122, Théorie du Potentiel, Orsay, 1983, Lecture Notes in Math., 1096, Springer, Berlin, 1984, pages 412–418 (French). MR0890369DOI10.1007/BFb0100122
  29. Meyer P. A., 10.5802/aif.149, Ann. Inst. Fourier (Grenoble) 13 (1963), fasc. 2, 357–372. MR0162956DOI10.5802/aif.149
  30. Mokobodzki G., 10.5802/aif.199, Ann. Inst. Fourier (Grenoble) 15 (1965), fasc. 1, 103–112 (French). Zbl0134.09502MR0196110DOI10.5802/aif.199

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.