Displaying similar documents to “On the integral representation of finely superharmonic functions”

On the dimension of p -harmonic measure in space

John L. Lewis, Kaj Nyström, Andrew Vogel (2013)

Journal of the European Mathematical Society

Similarity:

Let Ω n , n 3 , and let p , 1 < p < , p 2 , be given. In this paper we study the dimension of p -harmonic measures that arise from non-negative solutions to the p -Laplace equation, vanishing on a portion of Ω , in the setting of δ -Reifenberg flat domains. We prove, for p n , that there exists δ ˜ = δ ˜ ( p , n ) > 0 small such that if Ω is a δ -Reifenberg flat domain with δ < δ ˜ , then p -harmonic measure is concentrated on a set of σ -finite H n 1 -measure. We prove, for p n , that for sufficiently flat Wolff snowflakes the Hausdorff dimension of p -harmonic...

On the potential theory of some systems of coupled PDEs

Abderrahim Aslimani, Imad El Ghazi, Mohamed El Kadiri, Sabah Haddad (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we study some potential theoretical properties of solutions and super-solutions of some PDE systems (S) of type L 1 u = - μ 1 v , L 2 v = - μ 2 u , on a domain D of d , where μ 1 and μ 2 are suitable measures on D , and L 1 , L 2 are two second order linear differential elliptic operators on D with coefficients of class 𝒞 . We also obtain the integral representation of the nonnegative solutions and supersolutions of the system (S) by means of the Green kernels and Martin boundaries associated with L 1 and L 2 , and...

The harmonic Cesáro and Copson operators on the spaces L p ( ) , 1 ≤ p ≤ 2

Ferenc Móricz (2002)

Studia Mathematica

Similarity:

The harmonic Cesàro operator is defined for a function f in L p ( ) for some 1 ≤ p < ∞ by setting ( f ) ( x ) : = x ( f ( u ) / u ) d u for x > 0 and ( f ) ( x ) : = - - x ( f ( u ) / u ) d u for x < 0; the harmonic Copson operator ℂ* is defined for a function f in L ¹ l o c ( ) by setting * ( f ) ( x ) : = ( 1 / x ) x f ( u ) d u for x ≠ 0. The notation indicates that ℂ and ℂ* are adjoint operators in a certain sense. We present rigorous proofs of the following two commuting relations: (i) If f L p ( ) for some 1 ≤ p ≤ 2, then ( ( f ) ) ( t ) = * ( f ̂ ) ( t ) a.e., where f̂ denotes the Fourier transform of f. (ii) If f L p ( ) for some 1 < p ≤ 2, then...

Injectivity of sections of convex harmonic mappings and convolution theorems

Liulan Li, Saminathan Ponnusamy (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider the class 0 of sense-preserving harmonic functions f = h + g ¯ defined in the unit disk | z | < 1 and normalized so that h ( 0 ) = 0 = h ' ( 0 ) - 1 and g ( 0 ) = 0 = g ' ( 0 ) , where h and g are analytic in the unit disk. In the first part of the article we present two classes 𝒫 H 0 ( α ) and 𝒢 H 0 ( β ) of functions from 0 and show that if f 𝒫 H 0 ( α ) and F 𝒢 H 0 ( β ) , then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters α and β are satisfied. In the second part we study the harmonic sections...

On the characterization of harmonic functions with initial data in Morrey space

Bo Li, Jinxia Li, Bolin Ma, Tianjun Shen (2024)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space satisfying the doubling condition and an L 2 -Poincaré inequality. Consider the nonnegative operator generalized by a Dirichlet form on X . We will show that a solution u to ( - t 2 + ) u = 0 on X × + satisfies an α -Carleson condition if and only if u can be represented as the Poisson integral of the operator with the trace in the generalized Morrey space L 2 , α ( X ) , where α is a nonnegative function defined on a class of balls in X . This result extends the analogous characterization...

Natural pseudodistances between closed surfaces

Pietro Donatini, Patrizio Frosini (2007)

Journal of the European Mathematical Society

Similarity:

Let us consider two closed surfaces , 𝒩 of class C 1 and two functions ϕ : , ψ : 𝒩 of class C 1 , called measuring functions. The natural pseudodistance d between the pairs ( , ) , ( 𝒩 , ψ ) is defined as the infimum of Θ ( f ) : = max P | ϕ ( P ) ψ ( f ( P ) ) | as f varies in the set of all homeomorphisms from onto 𝒩 . In this paper we prove that the natural pseudodistance equals either | c 1 c 2 | , 1 2 | c 1 c 2 | , or 1 3 | c 1 c 2 | , where c 1 and c 2 are two suitable critical values of the measuring functions. This shows that a previous relation between the natural pseudodistance and...

The σ -property in C ( X )

Anthony W. Hager (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The σ -property of a Riesz space (real vector lattice) B is: For each sequence { b n } of positive elements of B , there is a sequence { λ n } of positive reals, and b B , with λ n b n b for each n . This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when “ σ ” obtains for a Riesz space of continuous real-valued functions C ( X ) . A basic result is: For discrete X , C ( X ) has σ iff the cardinal | X | < 𝔟 , Rothberger’s bounding number. Consequences...

L p , q spaces

Joseph Kupka

Similarity:

CONTENTS1. Introduction...................................................................................................... 52. Notation and basic terminology........................................................................... 73. Definition and basic properties of the L p , q spaces................................. 114. Integral representation of bounded linear functionals on L p , q ( B ) ........ 235. Examples in L p , q theory...................................................................................

Non-isotropic Hausdorff capacity of exceptional sets for pluri-Green potentials in the unit ball of ℂⁿ

Kuzman Adzievski (2006)

Annales Polonici Mathematici

Similarity:

We study questions related to exceptional sets of pluri-Green potentials V μ in the unit ball B of ℂⁿ in terms of non-isotropic Hausdorff capacity. For suitable measures μ on the ball B, the pluri-Green potentials V μ are defined by V μ ( z ) = B l o g ( 1 / | ϕ z ( w ) | ) d μ ( w ) , where for a fixed z ∈ B, ϕ z denotes the holomorphic automorphism of B satisfying ϕ z ( 0 ) = z , ϕ z ( z ) = 0 and ( ϕ z ϕ z ) ( w ) = w for every w ∈ B. If dμ(w) = f(w)dλ(w), where f is a non-negative measurable function of B, and λ is the measure on B, invariant under all holomorphic automorphisms of...

On the range-kernel orthogonality of elementary operators

Said Bouali, Youssef Bouhafsi (2015)

Mathematica Bohemica

Similarity:

Let L ( H ) denote the algebra of operators on a complex infinite dimensional Hilbert space H . For A , B L ( H ) , the generalized derivation δ A , B and the elementary operator Δ A , B are defined by δ A , B ( X ) = A X - X B and Δ A , B ( X ) = A X B - X for all X L ( H ) . In this paper, we exhibit pairs ( A , B ) of operators such that the range-kernel orthogonality of δ A , B holds for the usual operator norm. We generalize some recent results. We also establish some theorems on the orthogonality of the range and the kernel of Δ A , B with respect to the wider class of unitarily invariant...

Selectors of discrete coarse spaces

Igor Protasov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a coarse space ( X , ) with the bornology of bounded subsets, we extend the coarse structure from X × X to the natural coarse structure on ( { } ) × ( { } ) and say that a macro-uniform mapping f : ( { } ) X (or f : [ X ] 2 X ) is a selector (or 2-selector) of ( X , ) if f ( A ) A for each A { } ( A [ X ] 2 , respectively). We prove that a discrete coarse space ( X , ) admits a selector if and only if ( X , ) admits a 2-selector if and only if there exists a linear order “ " on X such that the family of intervals { [ a , b ] : a , b X , a b } is a base for the bornology .

The potential-Ramsey number of K n and K t - k

Jin-Zhi Du, Jian Hua Yin (2022)

Czechoslovak Mathematical Journal

Similarity:

A nonincreasing sequence π = ( d 1 , ... , d n ) of nonnegative integers is a graphic sequence if it is realizable by a simple graph G on n vertices. In this case, G is referred to as a realization of π . Given two graphs G 1 and G 2 , A. Busch et al. (2014) introduced the potential-Ramsey number of G 1 and G 2 , denoted by r pot ( G 1 , G 2 ) , as the smallest nonnegative integer m such that for every m -term graphic sequence π , there is a realization G of π with G 1 G or with G 2 G ¯ , where G ¯ is the complement of G . For t 2 and 0 k t 2 , let K t - k be the graph...