Universal central extension of direct limits of Hom-Lie algebras

Valiollah Khalili

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 1, page 275-293
  • ISSN: 0011-4642

Abstract

top
We prove that the universal central extension of a direct limit of perfect Hom-Lie algebras ( i , α i ) is (isomorphic to) the direct limit of universal central extensions of ( i , α i ) . As an application we provide the universal central extensions of some multiplicative Hom-Lie algebras. More precisely, we consider a family of multiplicative Hom-Lie algebras { ( sl k ( å ) , α k ) } k I and describe the universal central extension of its direct limit.

How to cite

top

Khalili, Valiollah. "Universal central extension of direct limits of Hom-Lie algebras." Czechoslovak Mathematical Journal 69.1 (2019): 275-293. <http://eudml.org/doc/294610>.

@article{Khalili2019,
abstract = {We prove that the universal central extension of a direct limit of perfect Hom-Lie algebras $(\mathcal \{L\}_i, \alpha _\{\mathcal \{L\}_i\})$ is (isomorphic to) the direct limit of universal central extensions of $(\mathcal \{L\}_i, \alpha _\{\mathcal \{L\}_i\})$. As an application we provide the universal central extensions of some multiplicative Hom-Lie algebras. More precisely, we consider a family of multiplicative Hom-Lie algebras $\lbrace (\{\rm sl\}_\{k\}(å), \alpha _k)\rbrace _\{k\in I\}$ and describe the universal central extension of its direct limit.},
author = {Khalili, Valiollah},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hom-Lie algebra; extension of Hom-Lie algebras and its direct limit},
language = {eng},
number = {1},
pages = {275-293},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Universal central extension of direct limits of Hom-Lie algebras},
url = {http://eudml.org/doc/294610},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Khalili, Valiollah
TI - Universal central extension of direct limits of Hom-Lie algebras
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 1
SP - 275
EP - 293
AB - We prove that the universal central extension of a direct limit of perfect Hom-Lie algebras $(\mathcal {L}_i, \alpha _{\mathcal {L}_i})$ is (isomorphic to) the direct limit of universal central extensions of $(\mathcal {L}_i, \alpha _{\mathcal {L}_i})$. As an application we provide the universal central extensions of some multiplicative Hom-Lie algebras. More precisely, we consider a family of multiplicative Hom-Lie algebras $\lbrace ({\rm sl}_{k}(å), \alpha _k)\rbrace _{k\in I}$ and describe the universal central extension of its direct limit.
LA - eng
KW - Hom-Lie algebra; extension of Hom-Lie algebras and its direct limit
UR - http://eudml.org/doc/294610
ER -

References

top
  1. Alison, B., Benkart, G., Gao, Y., 10.1007/s002080050341, Math. Ann. 316 (2000), 499-527. (2000) Zbl0989.17004MR1752782DOI10.1007/s002080050341
  2. Ammar, F., Ejbehi, Z., Makhlouf, A., Cohomology and deformations of Hom-algebras, J. Lie Theory 24 (2011), 813-836. (2011) Zbl1237.17003MR2917693
  3. Ammar, F., Mobrouk, S., Makhlouf, A., 10.1016/j.geomphys.2011.04.022, J. Geom. Phys. 61 (2011), 1898-1913. (2011) Zbl1258.17007MR2822457DOI10.1016/j.geomphys.2011.04.022
  4. Periñán, M. J. Aragón, Martín, A. J. Calderón, 10.13001/1081-3810.1579, Electron. J. Linear Algebra 24 (2012), 45-65. (2012) Zbl1258.16045MR2994641DOI10.13001/1081-3810.1579
  5. Arnal, D., Bakbrahem, W., Makhlouf, A., Quadratic and Pinczon algebras, Available at https://arxiv.org/pdf/1603.00435. 
  6. Azam, S., Behbodi, G., Yousofzadeh, M., 10.1080/00927872.2016.1172600, Commun. Algebra 44 (2016), 5309-5341. (2016) Zbl06638003MR3520278DOI10.1080/00927872.2016.1172600
  7. Benayadi, S., Makhlouf, A., 10.1016/j.geomphys.2013.10.010, J. Geom. Phys. 76 (2014), 38-60. (2014) Zbl1331.17028MR3144357DOI10.1016/j.geomphys.2013.10.010
  8. Bloch, S., 10.1007/bfb0089515, Algebra -Theory, 1980 Lecture Notes in Math. 854 Springer, Berlin (1981), 1-23. (1981) Zbl0469.14009MR0618298DOI10.1007/bfb0089515
  9. Bourbaki, N., 10.1007/978-3-540-33850-5, Hermann, Paris (1970), French. (1970) Zbl0211.02401MR0274237DOI10.1007/978-3-540-33850-5
  10. Casas, J. M., Insua, M. A., Pacheco, N., 10.15672/hjms.2015449110, Hacet. J. Math Stat. 44 (2015), 277-288. (2015) Zbl1344.17003MR3381108DOI10.15672/hjms.2015449110
  11. Cheng, Y., Su, Y., 10.1007/s10114-011-9626-5, Acta Math. Sin., Engl. Ser. 27 (2011), 813-830. (2011) Zbl1250.17001MR2786445DOI10.1007/s10114-011-9626-5
  12. Cheng, Y., Su, Y., 10.1142/S1005386713000266, Algebra Colloq. 20 (2013), 299-308. (2013) Zbl1310.17007MR3043314DOI10.1142/S1005386713000266
  13. Frégier, Y., Gohr, A., Silvestrov, S. D., 10.4303/jglta/S090402, J. Gen. Lie Theory Appl. 3 (2009), 285-295. (2009) Zbl1237.17005MR2602991DOI10.4303/jglta/S090402
  14. Gao, Y., Shang, S., 10.1016/j.jalgebra.2006.10.044, J. Algebra. 311 (2007), 216-230. (2007) Zbl1136.17016MR2309885DOI10.1016/j.jalgebra.2006.10.044
  15. Hartwig, J. T., Larsson, D., Silvestrov, S. D., 10.1016/j.jalgebra.2005.07.036, J. Algebra 295 (2006), 314-361. (2006) Zbl1138.17012MR2194957DOI10.1016/j.jalgebra.2005.07.036
  16. Jin, Q., Li, X., 10.1016/j.jalgebra.2007.12.005, J. Algebra 319 (2008), 1398-1408. (2008) Zbl1144.17005MR2383052DOI10.1016/j.jalgebra.2007.12.005
  17. Kassel, C., Loday, J.-L., 10.5802/aif.896, Ann. Inst. Fourier 32 (1982), 119-142 French. (1982) Zbl0485.17006MR0694130DOI10.5802/aif.896
  18. Khalili, V., 10.4134/BKMS.2012.49.6.1199, Bull. Korean Math. Soc. 49 (2012), 1199-1211. (2012) Zbl1276.17013MR3002679DOI10.4134/BKMS.2012.49.6.1199
  19. Li, X., 10.1155/2013/938901, Adv. Math. Phys. 2013 Article ID 938901, 7 pages. Zbl1291.17010MR3132688DOI10.1155/2013/938901
  20. Makhlouf, A., Silvestrov, S., 10.4303/jglta/S070206, J. Gen. Lie Theory Appl. 2 (2008), 51-64. (2008) Zbl1184.17002MR2399415DOI10.4303/jglta/S070206
  21. Makhlouf, A., Silvestrov, S., 10.1515/FORUM.2010.040, Forum Math. 22 (2010), 715-739. (2010) Zbl1201.17012MR2661446DOI10.1515/FORUM.2010.040
  22. Moody, R. V., Pianzola, A., Lie Algebras with Triangular Decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York (1995). (1995) Zbl0874.17026MR1323858
  23. Neeb, K.-H., 10.1023/A:1019743224737, Acts Appl. Math. 73 (2002), 175-219. (2002) Zbl1019.22011MR1926500DOI10.1023/A:1019743224737
  24. Neher, E., 10.1007/978-1-4613-0235-3_10, Groups, Rings, Lie and Hopf Algebras, 2001 Math. Appl. 555, Kluwer Academic Publishers, Dordrecht Y. Bahturin (2003), 141-166. (2003) Zbl1077.17016MR1995057DOI10.1007/978-1-4613-0235-3_10
  25. Neher, E., Sun, J., 10.1016/j.jalgebra.2012.06.020, J. Algebra 368 (2012), 169-181. (2012) Zbl1301.17007MR2955226DOI10.1016/j.jalgebra.2012.06.020
  26. Sheng, Y., 10.1007/s10468-011-9280-8, Alger. Represent. Theory 15 (2012), 1081-1098. (2012) Zbl1294.17001MR2994017DOI10.1007/s10468-011-9280-8
  27. Kallen, W. L. J. van der, 10.1007/BFb0060175, Lecture Notes in Mathematics 356, Springer, Berlin (1973). (1973) Zbl0275.17006MR0364484DOI10.1007/BFb0060175
  28. Weibel, C. A., 10.1017/CBO9781139644136, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge (1994). (1994) Zbl0797.18001MR1269324DOI10.1017/CBO9781139644136
  29. Yau, D., 10.4303/jglta/S070209, J. Gen. Lie Theory Appl. 2 (2008), 95-108. (2008) Zbl1214.17001MR2399418DOI10.4303/jglta/S070209
  30. Yau, D., Hom-algebras and homology, J. Lie Theory 19 (2009), 409-421. (2009) Zbl1252.17002MR2572137

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.