The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “ ( m , r ) -central Riordan arrays and their applications”

Computing the greatest 𝐗 -eigenvector of a matrix in max-min algebra

Ján Plavka (2016)

Kybernetika

Similarity:

A vector x is said to be an eigenvector of a square max-min matrix A if A x = x . An eigenvector x of A is called the greatest 𝐗 -eigenvector of A if x 𝐗 = { x ; x ̲ x x ¯ } and y x for each eigenvector y 𝐗 . A max-min matrix A is called strongly 𝐗 -robust if the orbit x , A x , A 2 x , reaches the greatest 𝐗 -eigenvector with any starting vector of 𝐗 . We suggest an O ( n 3 ) algorithm for computing the greatest 𝐗 -eigenvector of A and study the strong 𝐗 -robustness. The necessary and sufficient conditions for strong 𝐗 -robustness are introduced...

On linear preservers of two-sided gut-majorization on 𝐌 n , m

Asma Ilkhanizadeh Manesh, Ahmad Mohammadhasani (2018)

Czechoslovak Mathematical Journal

Similarity:

For X , Y 𝐌 n , m it is said that X is gut-majorized by Y , and we write X gut Y , if there exists an n -by- n upper triangular g-row stochastic matrix R such that X = R Y . Define the relation gut as follows. X gut Y if X is gut-majorized by Y and Y is gut-majorized by X . The (strong) linear preservers of gut on n and strong linear preservers of this relation on 𝐌 n , m have been characterized before. This paper characterizes all (strong) linear preservers and strong linear preservers of gut on n and 𝐌 n , m .

( 0 , 1 ) -matrices, discrepancy and preservers

LeRoy B. Beasley (2019)

Czechoslovak Mathematical Journal

Similarity:

Let m and n be positive integers, and let R = ( r 1 , ... , r m ) and S = ( s 1 , ... , s n ) be nonnegative integral vectors. Let A ( R , S ) be the set of all m × n ( 0 , 1 ) -matrices with row sum vector R and column vector S . Let R and S be nonincreasing, and let F ( R ) be the m × n ( 0 , 1 ) -matrix, where for each i , the i th row of F ( R , S ) consists of r i 1’s followed by ( n - r i ) 0’s. Let A A ( R , S ) . The discrepancy of A, disc ( A ) , is the number of positions in which F ( R ) has a 1 and A has a 0. In this paper we investigate linear operators mapping m × n matrices over...

On row-sum majorization

Farzaneh Akbarzadeh, Ali Armandnejad (2019)

Czechoslovak Mathematical Journal

Similarity:

Let 𝕄 n , m be the set of all n × m real or complex matrices. For A , B 𝕄 n , m , we say that A is row-sum majorized by B (written as A rs B ) if R ( A ) R ( B ) , where R ( A ) is the row sum vector of A and is the classical majorization on n . In the present paper, the structure of all linear operators T : 𝕄 n , m 𝕄 n , m preserving or strongly preserving row-sum majorization is characterized. Also we consider the concepts of even and circulant majorization on n and then find the linear preservers of row-sum majorization of these relations on 𝕄 n , m . ...

Repdigits in generalized Pell sequences

Jhon J. Bravo, Jose L. Herrera (2020)

Archivum Mathematicum

Similarity:

For an integer k 2 , let ( n ) n be the k - generalized Pell sequence which starts with 0 , ... , 0 , 1 ( k terms) and each term afterwards is given by the linear recurrence n = 2 n - 1 + n - 2 + + n - k . In this paper, we find all k -generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence ( P n ( 2 ) ) n . ...

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...

Distance matrices perturbed by Laplacians

Balaji Ramamurthy, Ravindra Bhalchandra Bapat, Shivani Goel (2020)

Applications of Mathematics

Similarity:

Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D i j denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D i j is the distance between i and j . Define D : = [ D i j ] , where D i i is the s × s null matrix and for i j , D i j is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order...