Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data
Andrea Dall'Aglio; Sergio Segura de León
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 2, page 379-390
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDall'Aglio, Andrea, and Segura de León, Sergio. "Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data." Czechoslovak Mathematical Journal 69.2 (2019): 379-390. <http://eudml.org/doc/294765>.
@article{DallAglio2019,
abstract = {We prove boundedness and continuity for solutions to the Dirichlet problem for the equation \[ -\{\rm div\}(a(x,\nabla u))=h(x,u)+\mu ,\quad \text\{in\} \ \Omega \subset \mathbb \{R\}^N, \]
where the left-hand side is a Leray-Lions operator from $W_0^\{1,p\} (\Omega )$ into $W^\{-1,p^\{\prime \}\}(\Omega )$ with $1<p<N$, $h(x,s)$ is a Carathéodory function which grows like $|s|^\{p-1\}$ and $\mu $ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of $\mu $.},
author = {Dall'Aglio, Andrea, Segura de León, Sergio},
journal = {Czechoslovak Mathematical Journal},
keywords = {bounded solution; $p$-Laplacian; renormalized solution; measure data},
language = {eng},
number = {2},
pages = {379-390},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data},
url = {http://eudml.org/doc/294765},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Dall'Aglio, Andrea
AU - Segura de León, Sergio
TI - Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 379
EP - 390
AB - We prove boundedness and continuity for solutions to the Dirichlet problem for the equation \[ -{\rm div}(a(x,\nabla u))=h(x,u)+\mu ,\quad \text{in} \ \Omega \subset \mathbb {R}^N, \]
where the left-hand side is a Leray-Lions operator from $W_0^{1,p} (\Omega )$ into $W^{-1,p^{\prime }}(\Omega )$ with $1<p<N$, $h(x,s)$ is a Carathéodory function which grows like $|s|^{p-1}$ and $\mu $ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of $\mu $.
LA - eng
KW - bounded solution; $p$-Laplacian; renormalized solution; measure data
UR - http://eudml.org/doc/294765
ER -
References
top- Hamid, H. Abdel, Bidaut-Veron, M. F., 10.1142/S0219199710003993, Commun. Contemp. Math. 12 (2010), 727-788. (2010) Zbl1205.35135MR2733197DOI10.1142/S0219199710003993
- Abdellaoui, B., Dall'Aglio, A., Peral, I., 10.1016/j.jde.2005.02.009, J. Differ. Equations 222 (2006), 21-62 corrigendum ibid. 246 2988-2990 2009. (2006) Zbl1357.35089MR2200746DOI10.1016/j.jde.2005.02.009
- Abdellaoui, B., Dall'Aglio, A., León, S. Segura de, 10.1515/ans-2017-0011, Adv. Nonlinear Stud. 17 (2017), 333-353. (2017) Zbl1370.35115MR3641646DOI10.1515/ans-2017-0011
- Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L., An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. (1995) Zbl0866.35037MR1354907
- Boccardo, L., Gallouët, T., Orsina, L., 10.1016/S0294-1449(16)30113-5, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 (1996), 539-551. (1996) Zbl0857.35126MR1409661DOI10.1016/S0294-1449(16)30113-5
- Boccardo, L., Leonori, T., 10.4310/MAA.2008.v15.n1.a6, Methods Appl. Anal. 15 (2008), 53-63. (2008) Zbl1173.35488MR2482209DOI10.4310/MAA.2008.v15.n1.a6
- Brézis, H., Kato, T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., IX. Sér. 58 (1979), 137-151. (1979) Zbl0408.35025MR0539217
- Maso, G. Dal, Murat, F., Orsina, L., Prignet, A., Renormalization solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 741-808. (1999) Zbl0958.35045MR1760541
- Giusti, E., 10.1142/9789812795557, World Scientific, Singapore (2003). (2003) Zbl1028.49001MR1962933DOI10.1142/9789812795557
- Grenon, N., 10.1016/S0294-1449(01)00079-8, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19 (2002), 1-11. (2002) Zbl1011.35054MR1902548DOI10.1016/S0294-1449(01)00079-8
- Jaye, B. J., Verbitsky, E., 10.1007/s00205-011-0491-2, Arch. Ration. Mech. Anal. 204 (2012), 627-681. (2012) Zbl1255.35137MR2909911DOI10.1007/s00205-011-0491-2
- Stampacchia, G., 10.5802/aif.204, Ann. Inst. Fourier 15 (1965), 189-257 French. (1965) Zbl0151.15401MR0192177DOI10.5802/aif.204
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.