Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data

Andrea Dall'Aglio; Sergio Segura de León

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 2, page 379-390
  • ISSN: 0011-4642

Abstract

top
We prove boundedness and continuity for solutions to the Dirichlet problem for the equation - div ( a ( x , u ) ) = h ( x , u ) + μ , in Ω N , where the left-hand side is a Leray-Lions operator from W 0 1 , p ( Ω ) into W - 1 , p ' ( Ω ) with 1 < p < N , h ( x , s ) is a Carathéodory function which grows like | s | p - 1 and μ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of μ .

How to cite

top

Dall'Aglio, Andrea, and Segura de León, Sergio. "Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data." Czechoslovak Mathematical Journal 69.2 (2019): 379-390. <http://eudml.org/doc/294765>.

@article{DallAglio2019,
abstract = {We prove boundedness and continuity for solutions to the Dirichlet problem for the equation \[ -\{\rm div\}(a(x,\nabla u))=h(x,u)+\mu ,\quad \text\{in\} \ \Omega \subset \mathbb \{R\}^N, \] where the left-hand side is a Leray-Lions operator from $W_0^\{1,p\} (\Omega )$ into $W^\{-1,p^\{\prime \}\}(\Omega )$ with $1<p<N$, $h(x,s)$ is a Carathéodory function which grows like $|s|^\{p-1\}$ and $\mu $ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of $\mu $.},
author = {Dall'Aglio, Andrea, Segura de León, Sergio},
journal = {Czechoslovak Mathematical Journal},
keywords = {bounded solution; $p$-Laplacian; renormalized solution; measure data},
language = {eng},
number = {2},
pages = {379-390},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data},
url = {http://eudml.org/doc/294765},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Dall'Aglio, Andrea
AU - Segura de León, Sergio
TI - Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 2
SP - 379
EP - 390
AB - We prove boundedness and continuity for solutions to the Dirichlet problem for the equation \[ -{\rm div}(a(x,\nabla u))=h(x,u)+\mu ,\quad \text{in} \ \Omega \subset \mathbb {R}^N, \] where the left-hand side is a Leray-Lions operator from $W_0^{1,p} (\Omega )$ into $W^{-1,p^{\prime }}(\Omega )$ with $1<p<N$, $h(x,s)$ is a Carathéodory function which grows like $|s|^{p-1}$ and $\mu $ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of $\mu $.
LA - eng
KW - bounded solution; $p$-Laplacian; renormalized solution; measure data
UR - http://eudml.org/doc/294765
ER -

References

top
  1. Hamid, H. Abdel, Bidaut-Veron, M. F., 10.1142/S0219199710003993, Commun. Contemp. Math. 12 (2010), 727-788. (2010) Zbl1205.35135MR2733197DOI10.1142/S0219199710003993
  2. Abdellaoui, B., Dall'Aglio, A., Peral, I., 10.1016/j.jde.2005.02.009, J. Differ. Equations 222 (2006), 21-62 corrigendum ibid. 246 2988-2990 2009. (2006) Zbl1357.35089MR2200746DOI10.1016/j.jde.2005.02.009
  3. Abdellaoui, B., Dall'Aglio, A., León, S. Segura de, 10.1515/ans-2017-0011, Adv. Nonlinear Stud. 17 (2017), 333-353. (2017) Zbl1370.35115MR3641646DOI10.1515/ans-2017-0011
  4. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L., An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. (1995) Zbl0866.35037MR1354907
  5. Boccardo, L., Gallouët, T., Orsina, L., 10.1016/S0294-1449(16)30113-5, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 (1996), 539-551. (1996) Zbl0857.35126MR1409661DOI10.1016/S0294-1449(16)30113-5
  6. Boccardo, L., Leonori, T., 10.4310/MAA.2008.v15.n1.a6, Methods Appl. Anal. 15 (2008), 53-63. (2008) Zbl1173.35488MR2482209DOI10.4310/MAA.2008.v15.n1.a6
  7. Brézis, H., Kato, T., Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., IX. Sér. 58 (1979), 137-151. (1979) Zbl0408.35025MR0539217
  8. Maso, G. Dal, Murat, F., Orsina, L., Prignet, A., Renormalization solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 741-808. (1999) Zbl0958.35045MR1760541
  9. Giusti, E., 10.1142/9789812795557, World Scientific, Singapore (2003). (2003) Zbl1028.49001MR1962933DOI10.1142/9789812795557
  10. Grenon, N., 10.1016/S0294-1449(01)00079-8, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19 (2002), 1-11. (2002) Zbl1011.35054MR1902548DOI10.1016/S0294-1449(01)00079-8
  11. Jaye, B. J., Verbitsky, E., 10.1007/s00205-011-0491-2, Arch. Ration. Mech. Anal. 204 (2012), 627-681. (2012) Zbl1255.35137MR2909911DOI10.1007/s00205-011-0491-2
  12. Stampacchia, G., 10.5802/aif.204, Ann. Inst. Fourier 15 (1965), 189-257 French. (1965) Zbl0151.15401MR0192177DOI10.5802/aif.204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.