Displaying similar documents to “Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data”

Existence of renormalized solutions for some degenerate and non-coercive elliptic equations

Youssef Akdim, Mohammed Belayachi, Hassane Hjiaj (2023)

Mathematica Bohemica

Similarity:

This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by t 2 - div ( b ( | u | ) | u | p - 2 u ) + d ( | u | ) | u | p = f - div ( c ( x ) | u | α ) in Ω , u = 0 on Ω , t where Ω is a bounded open set of N ( N 2 ) with 1 < p < N and f L 1 ( Ω ) , under some growth conditions on the function b ( · ) and d ( · ) , where c ( · ) is assumed to be in L N ( p - 1 ) ( Ω ) . We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded.

Further generalized versions of Ilmanen’s lemma on insertion of C 1 , ω or C loc 1 , ω functions

Václav Kryštof (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The author proved in 2018 that if G is an open subset of a Hilbert space, f 1 , f 2 : G continuous functions and ω a nontrivial modulus such that f 1 f 2 , f 1 is locally semiconvex with modulus ω and f 2 is locally semiconcave with modulus ω , then there exists f C loc 1 , ω ( G ) such that f 1 f f 2 . This is a generalization of Ilmanen’s lemma (which deals with linear modulus and functions on an open subset of n ). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to L p spaces, p [ 2 , ) . We...

On the characterization of harmonic functions with initial data in Morrey space

Bo Li, Jinxia Li, Bolin Ma, Tianjun Shen (2024)

Czechoslovak Mathematical Journal

Similarity:

Let ( X , d , μ ) be a metric measure space satisfying the doubling condition and an L 2 -Poincaré inequality. Consider the nonnegative operator generalized by a Dirichlet form on X . We will show that a solution u to ( - t 2 + ) u = 0 on X × + satisfies an α -Carleson condition if and only if u can be represented as the Poisson integral of the operator with the trace in the generalized Morrey space L 2 , α ( X ) , where α is a nonnegative function defined on a class of balls in X . This result extends the analogous characterization...

Radon-Nikodym property

Surjit Singh Khurana (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a Banach space E and a probability space ( X , 𝒜 , λ ) , a new proof is given that a measure μ : 𝒜 E , with μ λ , has RN derivative with respect to λ iff there is a compact or a weakly compact C E such that | μ | C : 𝒜 [ 0 , ] is a finite valued countably additive measure. Here we define | μ | C ( A ) = sup { k | μ ( A k ) , f k | } where { A k } is a finite disjoint collection of elements from 𝒜 , each contained in A , and { f k } E ' satisfies sup k | f k ( C ) | 1 . Then the result is extended to the case when E is a Frechet space.

On behavior of solutions to a chemotaxis system with a nonlinear sensitivity function

Senba, Takasi, Fujie, Kentarou

Similarity:

In this paper, we consider solutions to the following chemotaxis system with general sensitivity τ u t = Δ u - · ( u χ ( v ) ) in Ω × ( 0 , ) , η v t = Δ v - v + u in Ω × ( 0 , ) , u ν = u ν = 0 on Ω × ( 0 , ) . Here, τ and η are positive constants, χ is a smooth function on ( 0 , ) satisfying χ ' ( · ) > 0 and Ω is a bounded domain of 𝐑 n ( n 2 ). It is well known that the chemotaxis system with direct sensitivity ( χ ( v ) = χ 0 v , χ 0 > 0 ) has blowup solutions in the case where n 2 . On the other hand, in the case where χ ( v ) = χ 0 log v with 0 < χ 0 1 , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness...

Existence theorems for nonlinear differential equations having trichotomy in Banach spaces

Adel Mahmoud Gomaa (2017)

Czechoslovak Mathematical Journal

Similarity:

We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation x ˙ ( t ) = ( t ) x ( t ) + f ( t , x ( t ) ) , t ( P ) where { ( t ) : t } is a family of linear operators from a Banach space E into itself and f : × E E . By L ( E ) we denote the space of linear operators from E into itself. Furthermore, for a < b and d > 0 , we let C ( [ - d , 0 ] , E ) be the Banach space of continuous functions from [ - d , 0 ] into E and f d : [ a , b ] × C ( [ - d , 0 ] , E ) E . Let ^ : [ a , b ] L ( E ) be a strongly measurable and Bochner integrable operator on [ a , b ] and for t [ a , b ] define τ t x ( s ) = x ( t + s ) for each s [ - d , 0 ] . We prove that, under certain...

Admissible spaces for a first order differential equation with delayed argument

Nina A. Chernyavskaya, Lela S. Dorel, Leonid A. Shuster (2019)

Czechoslovak Mathematical Journal

Similarity:

We consider the equation - y ' ( x ) + q ( x ) y ( x - ϕ ( x ) ) = f ( x ) , x , where ϕ and q ( q 1 ) are positive continuous functions for all x and f C ( ) . By a solution of the equation we mean any function y , continuously differentiable everywhere in , which satisfies the equation for all x . We show that under certain additional conditions on the functions ϕ and q , the above equation has a unique solution y , satisfying the inequality y ' C ( ) + q y C ( ) c f C ( ) , where the constant c ( 0 , ) does not depend on the choice of f .

A density version of the Carlson–Simpson theorem

Pandelis Dodos, Vassilis Kanellopoulos, Konstantinos Tyros (2014)

Journal of the European Mathematical Society

Similarity:

We prove a density version of the Carlson–Simpson Theorem. Specifically we show the following. For every integer k 2 and every set A of words over k satisfying lim sup n | A [ k ] n | / k n > 0 there exist a word c over k and a sequence ( w n ) of left variable words over k such that the set c { c w 0 ( a 0 ) . . . w n ( a n ) : n and a 0 , . . . , a n [ k ] } is contained in A . While the result is infinite-dimensional its proof is based on an appropriate finite and quantitative version, also obtained in the paper.

Modular symbols, Eisenstein series, and congruences

Jay Heumann, Vinayak Vatsal (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let E and f be an Eisenstein series and a cusp form, respectively, of the same weight k 2 and of the same level N , both eigenfunctions of the Hecke operators, and both normalized so that a 1 ( f ) = a 1 ( E ) = 1 . The main result we prove is that when E and f are congruent mod a prime 𝔭 (which we take in this paper to be a prime of ¯ lying over a rational prime p &gt; 2 ), the algebraic parts of the special values L ( E , χ , j ) and L ( f , χ , j ) satisfy congruences mod the same prime. More explicitly, we prove that, under certain conditions, ...

On the potential theory of some systems of coupled PDEs

Abderrahim Aslimani, Imad El Ghazi, Mohamed El Kadiri, Sabah Haddad (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we study some potential theoretical properties of solutions and super-solutions of some PDE systems (S) of type L 1 u = - μ 1 v , L 2 v = - μ 2 u , on a domain D of d , where μ 1 and μ 2 are suitable measures on D , and L 1 , L 2 are two second order linear differential elliptic operators on D with coefficients of class 𝒞 . We also obtain the integral representation of the nonnegative solutions and supersolutions of the system (S) by means of the Green kernels and Martin boundaries associated with L 1 and L 2 , and...

The non-uniqueness of the limit solutions of the scalar Chern-Simons equations with signed measures

Adilson Eduardo Presoto (2021)

Mathematica Bohemica

Similarity:

We investigate the effect of admitting signed measures as a datum at the scalar Chern-Simons equation - Δ u + e u ( e u - 1 ) = μ in Ω with the Dirichlet boundary condition. Approximating μ by a sequence ( μ n ) n of L 1 functions or finite signed measures such that this equation has a solution u n for each n , we are interested in establishing the convergence of the sequence ( u n ) n to a function u # and describing the form of the measure which appears on the right-hand side of the scalar Chern-Simons equation solved by u # .

Convolution operators with anisotropically homogeneous measures on 2 n with n-dimensional support

E. Ferreyra, T. Godoy, M. Urciuolo (2002)

Colloquium Mathematicae

Similarity:

Let α i , β i > 0 , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let t x = ( t α x , . . . , t α x ) , t x = ( t β x , . . . , t β x ) and | | x | | = i = 1 n | x i | 1 / α i . Let φ₁,...,φₙ be real functions in C ( - 0 ) such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on 2 n given by μ ( E ) = χ E ( x , φ ( x ) ) | | x | | γ - α d x , where α = i = 1 n α i and dx denotes the Lebesgue measure on ℝⁿ. Let T μ f = μ f and let | | T μ | | p , q be the operator norm of T μ from L p ( 2 n ) into L q ( 2 n ) , where the L p spaces are taken with respect to the Lebesgue measure. The type set E μ is defined by E μ = ( 1 / p , 1 / q ) : | | T μ | | p , q < , 1 p , q . In the case α i β k for 1 ≤ i,k ≤ n we characterize the...

Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion

Moshe Marcus, Laurent Véron (2004)

Journal of the European Mathematical Society

Similarity:

Let Ω be a bounded domain of class C 2 in N and let K be a compact subset of Ω . Assume that q ( N + 1 ) / ( N 1 ) and denote by U K the maximal solution of Δ u + u q = 0 in Ω which vanishes on Ω K . We obtain sharp upper and lower estimates for U K in terms of the Bessel capacity C 2 / q , q ' and prove that U K is σ -moderate. In addition we describe the precise asymptotic behavior of U K at points σ K , which depends on the “density” of K at σ , measured in terms of the capacity C 2 / q , q ' .

2-Cohomology of semi-simple simply connected group-schemes over curves defined over p -adic fields

Jean-Claude Douai (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let X be a proper, smooth, geometrically connected curve over a p -adic field k . Lichtenbaum proved that there exists a perfect duality: Br ( X ) × Pic ( X ) / between the Brauer and the Picard group of X , from which he deduced the existence of an injection of Br ( X ) in P X Br ( k P ) where P X and k P denotes the residual field of the point P . The aim of this paper is to prove that if G = G ˜ is an X e t - scheme of semi-simple simply connected groups (s.s.s.c groups), then we can deduce from Lichtenbaum’s results...

Subclasses of typically real functions determined by some modular inequalities

Leopold Koczan, Katarzyna Trąbka-Więcław (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk Δ : = { z : | z | < 1 } , normalized by f ( 0 ) = f ' ( 0 ) - 1 = 0 and such that Im z Im f ( z ) 0 for z Δ . Moreover, let us denote: T ( 2 ) : = { f T : f ( z ) = - f ( - z ) for z Δ } and T M , g : = { f T : f M g in Δ } , where M > 1 , g T S and S consists of all analytic functions, normalized and univalent in Δ .We investigate  classes in which the subordination is replaced with the majorization and the function g is typically real but does not necessarily univalent, i.e. classes { f T : f M g in Δ } , where M > 1 , g T , which we denote...