Existence results for semilinear elliptic equations with small measure data

Nathalie Grenon

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 1, page 1-11
  • ISSN: 0294-1449

How to cite

top

Grenon, Nathalie. "Existence results for semilinear elliptic equations with small measure data." Annales de l'I.H.P. Analyse non linéaire 19.1 (2002): 1-11. <http://eudml.org/doc/78538>.

@article{Grenon2002,
author = {Grenon, Nathalie},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {measure data; existence result; smallness condition},
language = {eng},
number = {1},
pages = {1-11},
publisher = {Elsevier},
title = {Existence results for semilinear elliptic equations with small measure data},
url = {http://eudml.org/doc/78538},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Grenon, Nathalie
TI - Existence results for semilinear elliptic equations with small measure data
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 1
SP - 1
EP - 11
LA - eng
KW - measure data; existence result; smallness condition
UR - http://eudml.org/doc/78538
ER -

References

top
  1. [1] Adams D.R., Pierre M., Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier, Grenoble41 (1991) 117-135. Zbl0741.35012MR1112194
  2. [2] Baras P., Pierre M., Critère d'existence de solutions positives pour des équations semilinéaires non monotones, Ann. Inst. H. Poincaré, Analyse Non Linéaire2 (1985) 185-212. Zbl0599.35073MR797270
  3. [3] Benilan P., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vazquez J.L., An L1 theory of existence uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.22 (1995) 241-273. Zbl0866.35037MR1354907
  4. [4] Brezis H., Cabré X., Some simple nonlinear PDE's without solutions, Bolletino U.M.I.1-B (1998) 223-262. Zbl0907.35048MR1638143
  5. [5] Boccardo L., Gallouët T., Orsina L., Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire13 (1996) 539-551. Zbl0857.35126MR1409661
  6. [6] Boccardo L., Murat F., Puel J.P., Existence of bounded solutions for nonlinear elliptic unilateral problem, Ann. di Mat. Pura ed Appl.152 (1988) 183-196. Zbl0687.35042MR980979
  7. [7] Dal Maso G., Murat F., Orsina L., Prignet A., Definition and existence of renormalized solutions of elliptic equations with general measure data, C. R. Acad. Sci. Paris Série I325 (1997) 481-486. Zbl0887.35057MR1692311
  8. [8] Dal Maso G., Murat F., Orsina L., Prignet A., Renormalized solutions of elliptic equations with general measure data, Ann. Scuol. Norm. Pisa (4)XXVIII (1999) 741-808. Zbl0958.35045MR1760541
  9. [9] Ferone V., Murat F., Nonlinear problems having natural growth in the gradient: an existence result when the source term is small, to appear. Zbl1158.35358MR1780731
  10. [10] Fukushima M., Sato K., Taniguchi S., On the closable part of pre-Dirichlet forms and the fine support of the underlying measures, Osaka J. Math.28 (1991) 517-535. Zbl0756.60071MR1144471
  11. [11] Kalton N.J., Verbitsky E., Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc. 351 (9) 3441–3497. Zbl0948.35044MR1475688
  12. [12] Grenon N., Existence and comparison results quasilinear elliptic equations with quadratic growth in the gradient, J. Differential Equations, to appear. Zbl0973.35075MR1816791
  13. [13] Grenon N., Lr estimates for degenerate elliptic problems, Pot. Anal., to appear. Zbl1014.35035MR1894505
  14. [14] Grenon-Isselkou N., Mossino J., Existence de solutions bornées pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci.321 (1995) 51-56. Zbl0837.35045MR1340081
  15. [15] Orsina L., Solvability of linear and semilinear eigenvalue problems with L1 data, Rend. Sem. Mat. Univ. Padova90 (1993). Zbl0822.35106MR1257140
  16. [16] Stampacchia G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble)15 (1965) 189-258. Zbl0151.15401MR192177
  17. [17] Talenti G., Linear elliptic P.D.E.'s: Level sets, rearrangements and a priori estimates of solutions, Boll. U.M.I. (6)4-B (1985) 917-949. Zbl0602.35025MR831299

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.