Displaying similar documents to “On unit group of finite semisimple group algebras of non-metabelian groups up to order 72”

The unit groups of semisimple group algebras of some non-metabelian groups of order 144

Gaurav Mittal, Rajendra K. Sharma (2023)

Mathematica Bohemica

Similarity:

We consider all the non-metabelian groups G of order 144 that have exponent either 36 or 72 and deduce the unit group U ( 𝔽 q G ) of semisimple group algebra 𝔽 q G . Here, q denotes the power of a prime, i.e., q = p r for p prime and a positive integer r . Up to isomorphism, there are 6 groups of order 144 that have exponent either 36 or 72 . Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order 144 that are a direct product of two...

Group algebras whose groups of normalized units have exponent 4

Victor Bovdi, Mohammed Salim (2018)

Czechoslovak Mathematical Journal

Similarity:

We give a full description of locally finite 2 -groups G such that the normalized group of units of the group algebra F G over a field F of characteristic 2 has exponent 4 .

Quantized semisimple Lie groups

Rita Fioresi, Robert Yuncken (2024)

Archivum Mathematicum

Similarity:

The goal of this expository paper is to give a quick introduction to q -deformations of semisimple Lie groups. We discuss principally the rank one examples of 𝒰 q ( 𝔰𝔩 2 ) , 𝒪 ( SU q ( 2 ) ) , 𝒟 ( SL q ( 2 , ) ) and related algebras. We treat quantized enveloping algebras, representations of 𝒰 q ( 𝔰𝔩 2 ) , generalities on Hopf algebras and quantum groups, * -structures, quantized algebras of functions on q -deformed compact semisimple groups, the Peter-Weyl theorem, * -Hopf algebras associated to complex semisimple Lie groups and the Drinfeld...

Finite groups whose all proper subgroups are 𝒞 -groups

Pengfei Guo, Jianjun Liu (2018)

Czechoslovak Mathematical Journal

Similarity:

A group G is said to be a 𝒞 -group if for every divisor d of the order of G , there exists a subgroup H of G of order d such that H is normal or abnormal in G . We give a complete classification of those groups which are not 𝒞 -groups but all of whose proper subgroups are 𝒞 -groups.

Limits of relatively hyperbolic groups and Lyndon’s completions

Olga Kharlampovich, Alexei Myasnikov (2012)

Journal of the European Mathematical Society

Similarity:

We describe finitely generated groups H universally equivalent (with constants from G in the language) to a given torsion-free relatively hyperbolic group G with free abelian parabolics. It turns out that, as in the free group case, the group H embeds into the Lyndon’s completion G [ t ] of the group G , or, equivalently, H embeds into a group obtained from G by finitely many extensions of centralizers. Conversely, every subgroup of G [ t ] containing G is universally equivalent to G . Since finitely...

Permutability of centre-by-finite groups

Brunetto Piochi (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Let G be a group and m be an integer greater than or equal to 2 . G is said to be m -permutable if every product of m elements can be reordered at least in one way. We prove that, if G has a centre of finite index z , then G is ( 1 + [ z / 2 ] ) -permutable. More bounds are given on the least m such that G is m -permutable.

The density of representation degrees

Martin Liebeck, Dan Segal, Aner Shalev (2012)

Journal of the European Mathematical Society

Similarity:

For a group G and a positive real number x , define d G ( x ) to be the number of integers less than x which are dimensions of irreducible complex representations of G . We study the asymptotics of d G ( x ) for algebraic groups, arithmetic groups and finitely generated linear groups. In particular we prove an “alternative” for finitely generated linear groups G in characteristic zero, showing that either there exists α > 0 such that d G ( x ) > x α for all large x , or G is virtually abelian (in which case d G ( x ) is bounded). ...

The Ribes-Zalesskii property of some one relator groups

Gilbert Mantika, Narcisse Temate-Tangang, Daniel Tieudjo (2022)

Archivum Mathematicum

Similarity:

The profinite topology on any abstract group G , is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group G has the Ribes-Zalesskii property of rank k , or is RZ k with k a natural number, if any product H 1 H 2 H k of finitely generated subgroups H 1 , H 2 , , H k is closed in the profinite topology on G . And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ k for any natural number k . In this paper we characterize...

On the structural theory of  II 1 factors of negatively curved groups

Ionut Chifan, Thomas Sinclair (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Ozawa showed in [21] that for any i.c.c. hyperbolic group, the associated group factor L Γ is solid. Developing a new approach that combines some methods of Peterson [29], Ozawa and Popa [27, 28], and Ozawa [25], we strengthen this result by showing that L Γ is strongly solid. Using our methods in cooperation with a cocycle superrigidity result of Ioana [12], we show that profinite actions of lattices in  Sp ( n , 1 ) , n 2 , are virtually W * -superrigid.

On the Davenport constant and group algebras

Daniel Smertnig (2010)

Colloquium Mathematicae

Similarity:

For a finite abelian group G and a splitting field K of G, let (G,K) denote the largest integer l ∈ ℕ for which there is a sequence S = g · . . . · g l over G such that ( X g - a ) · . . . · ( X g l - a l ) 0 K [ G ] for all a , . . . , a l K × . If (G) denotes the Davenport constant of G, then there is the straightforward inequality (G) - 1 ≤ (G,K). Equality holds for a variety of groups, and a conjecture of W. Gao et al. states that equality holds for all groups. We offer further groups for which equality holds, but we also give the first examples of groups G for...

Characterization of the alternating groups by their order and one conjugacy class length

Alireza Khalili Asboei, Reza Mohammadyari (2016)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group, and let N ( G ) be the set of conjugacy class sizes of G . By Thompson’s conjecture, if L is a finite non-abelian simple group, G is a finite group with a trivial center, and N ( G ) = N ( L ) , then L and G are isomorphic. Recently, Chen et al. contributed interestingly to Thompson’s conjecture under a weak condition. They only used the group order and one or two special conjugacy class sizes of simple groups and characterized successfully sporadic simple groups (see Li’s PhD dissertation)....

Obstruction sets and extensions of groups

Francesca Balestrieri (2016)

Acta Arithmetica

Similarity:

Let X be a nice variety over a number field k. We characterise in pure “descent-type” terms some inequivalent obstruction sets refining the inclusion X ( k ) é t , B r X ( k ) B r . In the first part, we apply ideas from the proof of X ( k ) é t , B r = X ( k ) k by Skorobogatov and Demarche to new cases, by proving a comparison theorem for obstruction sets. In the second part, we show that if k are such that E x t ( , k ) , then X ( k ) = X ( k ) . This allows us to conclude, among other things, that X ( k ) é t , B r = X ( k ) k and X ( k ) S o l , B r = X ( k ) S o l k .